Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator
The ionic conducting polymer gel film (ICPF) actuator is a perfluorosulfonic acid membrane plated with platinum on its both surfaces. It bends in water and in wet condition by applying a low voltage of 1.5 V to its surfaces. This phenomenon was discovered in 1992. The principle of the motion is stil...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ionic conducting polymer gel film (ICPF) actuator is a perfluorosulfonic acid membrane plated with platinum on its both surfaces. It bends in water and in wet condition by applying a low voltage of 1.5 V to its surfaces. This phenomenon was discovered in 1992. The principle of the motion is still unknown. This paper discusses 2-dimensional linear approximate modelling of the ICPF actuator. The authors are proposing a dynamic model of the actuator consisting of an electrical stage, a stress generation stage and mechanical stage. In the stress generation stage, time derivative of current generates the internal stress with a second degree delay. Expansion and contraction of each surface induce bending motion in the mechanical stage. Simulation results were in agreement with actual responses. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.1996.503781 |