Real-time challenge balance in an RTS game using rtNEAT
This paper explores using the NEAT and rtNEAT neuro-evolution methodologies to generate intelligent opponents in real-time strategy (RTS) games. The main objective is to adapt the challenge generated by the game opponents to match the skill of a player in real-time, ultimately leading to a higher en...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores using the NEAT and rtNEAT neuro-evolution methodologies to generate intelligent opponents in real-time strategy (RTS) games. The main objective is to adapt the challenge generated by the game opponents to match the skill of a player in real-time, ultimately leading to a higher entertainment value perceived by a human player of the game. Results indicate the effectiveness of NEAT and rtNEAT but demonstrate their limitations for use in real-time strategy games. |
---|---|
ISSN: | 2325-4270 |
DOI: | 10.1109/CIG.2008.5035625 |