Swarm's flight: Accelerating the particles using C-CUDA

With the development of Graphics Processing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform, several areas of knowledge are being benefited with the reduction of the computing time. Our goal is to show how optimization algorithms inspired by Swarm Intelligence can take profit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: de P. Veronese, L., Krohling, R.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of Graphics Processing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform, several areas of knowledge are being benefited with the reduction of the computing time. Our goal is to show how optimization algorithms inspired by Swarm Intelligence can take profit from this technology. In this paper, we provide an implementation of the Particle Swarm Optimization (PSO) algorithm in C-CUDA. The algorithm was tested on a suite of well-known benchmark optimization problems and the computing time has been compared with the same algorithm implemented in C and Matlab. Results demonstrate that the computing time can significantly be reduced using C-CUDA. As far as we know, this is the first implementation of PSO in C-CUDA.
ISSN:1089-778X
1941-0026
DOI:10.1109/CEC.2009.4983358