Voice search of structured media data
This paper addresses the problem of using unstructured queries to search a structured database in voice search applications. By incorporating structural information in music metadata, the end-to-end search error has been reduced by 15% on text queries and up to 11% on spoken queries. Based on that,...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of using unstructured queries to search a structured database in voice search applications. By incorporating structural information in music metadata, the end-to-end search error has been reduced by 15% on text queries and up to 11% on spoken queries. Based on that, an HMM sequential rescoring model has reduced the error rate by 28% on text queries and up to 23% on spoken queries compared to the baseline system. Furthermore, a phonetic similarity model has been introduced to compensate speech recognition errors, which has improved the end-to-end search accuracy consistently across different levels of speech recognition accuracy. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2009.4960490 |