Generic invertibility of multidimensional FIR multirate systems and filter banks
We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3388 |
---|---|
container_issue | |
container_start_page | 3385 |
container_title | |
container_volume | |
creator | Law, K.L. Fossum, R.M. Do, M.N. |
description | We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems. |
doi_str_mv | 10.1109/ICASSP.2009.4960351 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960351</ieee_id><sourcerecordid>4960351</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cc1969d0c70d168d05353deec0212ecec15a4883159ed3c2a27e97d95cd531bd3</originalsourceid><addsrcrecordid>eNpVUMlqwzAUVDeoSf0FuegHnOppsa1jCc0CgYamhd6CLD2DWtspklrw39eQXDqXgRkYZoaQObAFANOP2-XT4bBfcMb0QuqSCQVXJNdVDZJLyYWS6ppkXFS6AM0-bv55or4lGSjOihKkvid5jJ9sglQCpMrIfo0DBm-pH34xJN_4zqeRnlra_3TJO9_jEP1pMB1dbV_PYjAJaRxjwj5SMzja-i5hoI0ZvuIDuWtNFzG_8Iy8r57flpti97KeluwKD5VKhbWgS-2YrZiDsnZMTV0domUcOFq0oIysawFKoxOWG16hrpxW1k3NGydmZH7O9Yh4_A6-N2E8Xv4RfwgmViU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generic invertibility of multidimensional FIR multirate systems and filter banks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Law, K.L. ; Fossum, R.M. ; Do, M.N.</creator><creatorcontrib>Law, K.L. ; Fossum, R.M. ; Do, M.N.</creatorcontrib><description>We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel bank filters ; Digital signal processing ; Filter bank ; Finite impulse response filter ; Generic Invertible ; Generic Property ; Image reconstruction ; Left Invertibility ; Mathematics ; MIMO ; Multidimensional systems ; Multirate Systems ; Perfect Reconstruction ; Polynomials ; Sampling methods</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3385-3388</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Law, K.L.</creatorcontrib><creatorcontrib>Fossum, R.M.</creatorcontrib><creatorcontrib>Do, M.N.</creatorcontrib><title>Generic invertibility of multidimensional FIR multirate systems and filter banks</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.</description><subject>Channel bank filters</subject><subject>Digital signal processing</subject><subject>Filter bank</subject><subject>Finite impulse response filter</subject><subject>Generic Invertible</subject><subject>Generic Property</subject><subject>Image reconstruction</subject><subject>Left Invertibility</subject><subject>Mathematics</subject><subject>MIMO</subject><subject>Multidimensional systems</subject><subject>Multirate Systems</subject><subject>Perfect Reconstruction</subject><subject>Polynomials</subject><subject>Sampling methods</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlqwzAUVDeoSf0FuegHnOppsa1jCc0CgYamhd6CLD2DWtspklrw39eQXDqXgRkYZoaQObAFANOP2-XT4bBfcMb0QuqSCQVXJNdVDZJLyYWS6ppkXFS6AM0-bv55or4lGSjOihKkvid5jJ9sglQCpMrIfo0DBm-pH34xJN_4zqeRnlra_3TJO9_jEP1pMB1dbV_PYjAJaRxjwj5SMzja-i5hoI0ZvuIDuWtNFzG_8Iy8r57flpti97KeluwKD5VKhbWgS-2YrZiDsnZMTV0domUcOFq0oIysawFKoxOWG16hrpxW1k3NGydmZH7O9Yh4_A6-N2E8Xv4RfwgmViU</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Law, K.L.</creator><creator>Fossum, R.M.</creator><creator>Do, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>Generic invertibility of multidimensional FIR multirate systems and filter banks</title><author>Law, K.L. ; Fossum, R.M. ; Do, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cc1969d0c70d168d05353deec0212ecec15a4883159ed3c2a27e97d95cd531bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Channel bank filters</topic><topic>Digital signal processing</topic><topic>Filter bank</topic><topic>Finite impulse response filter</topic><topic>Generic Invertible</topic><topic>Generic Property</topic><topic>Image reconstruction</topic><topic>Left Invertibility</topic><topic>Mathematics</topic><topic>MIMO</topic><topic>Multidimensional systems</topic><topic>Multirate Systems</topic><topic>Perfect Reconstruction</topic><topic>Polynomials</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Law, K.L.</creatorcontrib><creatorcontrib>Fossum, R.M.</creatorcontrib><creatorcontrib>Do, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Law, K.L.</au><au>Fossum, R.M.</au><au>Do, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generic invertibility of multidimensional FIR multirate systems and filter banks</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>3385</spage><epage>3388</epage><pages>3385-3388</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960351</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3385-3388 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4960351 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Channel bank filters Digital signal processing Filter bank Finite impulse response filter Generic Invertible Generic Property Image reconstruction Left Invertibility Mathematics MIMO Multidimensional systems Multirate Systems Perfect Reconstruction Polynomials Sampling methods |
title | Generic invertibility of multidimensional FIR multirate systems and filter banks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generic%20invertibility%20of%20multidimensional%20FIR%20multirate%20systems%20and%20filter%20banks&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Law,%20K.L.&rft.date=2009-04&rft.spage=3385&rft.epage=3388&rft.pages=3385-3388&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960351&rft_dat=%3Cieee_6IE%3E4960351%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960351&rfr_iscdi=true |