Generic invertibility of multidimensional FIR multirate systems and filter banks

We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Law, K.L., Fossum, R.M., Do, M.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3388
container_issue
container_start_page 3385
container_title
container_volume
creator Law, K.L.
Fossum, R.M.
Do, M.N.
description We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.
doi_str_mv 10.1109/ICASSP.2009.4960351
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960351</ieee_id><sourcerecordid>4960351</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cc1969d0c70d168d05353deec0212ecec15a4883159ed3c2a27e97d95cd531bd3</originalsourceid><addsrcrecordid>eNpVUMlqwzAUVDeoSf0FuegHnOppsa1jCc0CgYamhd6CLD2DWtspklrw39eQXDqXgRkYZoaQObAFANOP2-XT4bBfcMb0QuqSCQVXJNdVDZJLyYWS6ppkXFS6AM0-bv55or4lGSjOihKkvid5jJ9sglQCpMrIfo0DBm-pH34xJN_4zqeRnlra_3TJO9_jEP1pMB1dbV_PYjAJaRxjwj5SMzja-i5hoI0ZvuIDuWtNFzG_8Iy8r57flpti97KeluwKD5VKhbWgS-2YrZiDsnZMTV0domUcOFq0oIysawFKoxOWG16hrpxW1k3NGydmZH7O9Yh4_A6-N2E8Xv4RfwgmViU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generic invertibility of multidimensional FIR multirate systems and filter banks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Law, K.L. ; Fossum, R.M. ; Do, M.N.</creator><creatorcontrib>Law, K.L. ; Fossum, R.M. ; Do, M.N.</creatorcontrib><description>We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel bank filters ; Digital signal processing ; Filter bank ; Finite impulse response filter ; Generic Invertible ; Generic Property ; Image reconstruction ; Left Invertibility ; Mathematics ; MIMO ; Multidimensional systems ; Multirate Systems ; Perfect Reconstruction ; Polynomials ; Sampling methods</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3385-3388</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Law, K.L.</creatorcontrib><creatorcontrib>Fossum, R.M.</creatorcontrib><creatorcontrib>Do, M.N.</creatorcontrib><title>Generic invertibility of multidimensional FIR multirate systems and filter banks</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.</description><subject>Channel bank filters</subject><subject>Digital signal processing</subject><subject>Filter bank</subject><subject>Finite impulse response filter</subject><subject>Generic Invertible</subject><subject>Generic Property</subject><subject>Image reconstruction</subject><subject>Left Invertibility</subject><subject>Mathematics</subject><subject>MIMO</subject><subject>Multidimensional systems</subject><subject>Multirate Systems</subject><subject>Perfect Reconstruction</subject><subject>Polynomials</subject><subject>Sampling methods</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlqwzAUVDeoSf0FuegHnOppsa1jCc0CgYamhd6CLD2DWtspklrw39eQXDqXgRkYZoaQObAFANOP2-XT4bBfcMb0QuqSCQVXJNdVDZJLyYWS6ppkXFS6AM0-bv55or4lGSjOihKkvid5jJ9sglQCpMrIfo0DBm-pH34xJN_4zqeRnlra_3TJO9_jEP1pMB1dbV_PYjAJaRxjwj5SMzja-i5hoI0ZvuIDuWtNFzG_8Iy8r57flpti97KeluwKD5VKhbWgS-2YrZiDsnZMTV0domUcOFq0oIysawFKoxOWG16hrpxW1k3NGydmZH7O9Yh4_A6-N2E8Xv4RfwgmViU</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Law, K.L.</creator><creator>Fossum, R.M.</creator><creator>Do, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>Generic invertibility of multidimensional FIR multirate systems and filter banks</title><author>Law, K.L. ; Fossum, R.M. ; Do, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cc1969d0c70d168d05353deec0212ecec15a4883159ed3c2a27e97d95cd531bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Channel bank filters</topic><topic>Digital signal processing</topic><topic>Filter bank</topic><topic>Finite impulse response filter</topic><topic>Generic Invertible</topic><topic>Generic Property</topic><topic>Image reconstruction</topic><topic>Left Invertibility</topic><topic>Mathematics</topic><topic>MIMO</topic><topic>Multidimensional systems</topic><topic>Multirate Systems</topic><topic>Perfect Reconstruction</topic><topic>Polynomials</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Law, K.L.</creatorcontrib><creatorcontrib>Fossum, R.M.</creatorcontrib><creatorcontrib>Do, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Law, K.L.</au><au>Fossum, R.M.</au><au>Do, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generic invertibility of multidimensional FIR multirate systems and filter banks</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>3385</spage><epage>3388</epage><pages>3385-3388</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960351</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3385-3388
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4960351
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Channel bank filters
Digital signal processing
Filter bank
Finite impulse response filter
Generic Invertible
Generic Property
Image reconstruction
Left Invertibility
Mathematics
MIMO
Multidimensional systems
Multirate Systems
Perfect Reconstruction
Polynomials
Sampling methods
title Generic invertibility of multidimensional FIR multirate systems and filter banks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generic%20invertibility%20of%20multidimensional%20FIR%20multirate%20systems%20and%20filter%20banks&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Law,%20K.L.&rft.date=2009-04&rft.spage=3385&rft.epage=3388&rft.pages=3385-3388&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960351&rft_dat=%3Cieee_6IE%3E4960351%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960351&rfr_iscdi=true