Generic invertibility of multidimensional FIR multirate systems and filter banks
We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2009.4960351 |