Generic invertibility of multidimensional FIR multirate systems and filter banks

We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Law, K.L., Fossum, R.M., Do, M.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the invertibility of M-variate polynomial (respectively : Laurent polynomial) matrices of size N by P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input multiple-output systems, and multirate systems. The main result of this paper is to prove that when N - P ges M, then H(z) is generically invertible; whereas when N - P Lt M, then H(z) is generically noninvertible. As a result, we can have an alternative approach in design of the multidimensional systems.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2009.4960351