A fast method for classifying surface textures
Surface texture classification is an important aspect of computer vision and a well studied problem. In this paper, we greatly increase speed for texture classification while maintaining accuracy. We take inspiration form past work and propose a new method for texture classification which is extreme...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface texture classification is an important aspect of computer vision and a well studied problem. In this paper, we greatly increase speed for texture classification while maintaining accuracy. We take inspiration form past work and propose a new method for texture classification which is extremely fast due to the low dimensionality of our feature space. We extract distinctive features at a very early stage, thus removing the dependency on expensive and sensitive operations such as k-Means clustering which is used by much work in this field of research. We present experimental results on the Colombia-Utrecht Reflectance and Texture Database (CURET), to date the most challenging dataset for texture classification, and show that our method achieves comparable classification accuracy in comparison with the state-of-the-art, but at a 10-fold increased speed. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2009.4959774 |