The Use of Tribocharging in the Electrostatic Beneficiation of Lunar Simulant

The use of tribocharging as a potential method to provide sufficient charge to several different lunar simulants for electrostatic beneficiation was investigated. The objective was to determine whether specific minerals of interest (e.g., ilmenite) that are present in lunar regolith could be enriche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2009-05, Vol.45 (3), p.1060-1067
Hauptverfasser: Trigwell, S., Captain, J.G., Arens, E.E., Quinn, J.W., Calle, C.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of tribocharging as a potential method to provide sufficient charge to several different lunar simulants for electrostatic beneficiation was investigated. The objective was to determine whether specific minerals of interest (e.g., ilmenite) that are present in lunar regolith could be enriched in concentration by beneficiation that would therefore allow for more efficient extraction for in situ resource utilization use. The production of oxygen, water, and other resources on the Moon from raw materials is vital for future missions to the Moon. Successful separation of ilmenite was achieved for a prepared simulant (KSC-1), which is a mixture of pure commercially supplied pyroxene, olivine, feldspar, and ilmenite, in a 4 : 4 : 1 : 1 ratio, showing proof of concept when tribocharged against three different charging materials, namely, Al, Cu, and PTFE. Separation by chemical composition was also observed for existing lunar simulants JSC-1 and JSC-1A; however, the interpretation of the separation was difficult due to the complex mineralogy of the simulants compared to the simple prepared mixture.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2009.2018976