A Parallel Implementation of the 2D Wavelet Transform Using CUDA
There is a multicore platform that is currently concentrating an enormous attention due to its tremendous potential in terms of sustained performance: the NVIDIA Tesla boards. These cards intended for general-purpose computing on graphic processing units (GPGPUs) are used as data-parallel computing...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a multicore platform that is currently concentrating an enormous attention due to its tremendous potential in terms of sustained performance: the NVIDIA Tesla boards. These cards intended for general-purpose computing on graphic processing units (GPGPUs) are used as data-parallel computing devices. They are based on the Computed Unified Device Architecture (CUDA) which is common to the latest NVIDIA GPUs. The bottom line is a multicore platform which provides an enormous potential performance benefit driven by a non-traditional programming model. In this paper we try to provide some insight into the peculiarities of CUDA in order to target scientific computing by means of a specific example. In particular, we show that the parallelization of the two-dimensional fast wavelet transform for the NVIDIA Tesla C870 achieves a speedup of 20.8 for an image size of 8192times8192, when compared with the fastest host-only version implementation using OpenMP and including the data transfers between main memory and device memory. |
---|---|
ISSN: | 1066-6192 2377-5750 |
DOI: | 10.1109/PDP.2009.40 |