Unit-growing learning optimizing the solvability condition for model-free regression
The universal approximation capability exhibited by one-hidden layer neural networks is explored to produce a supervised unit-growing learning for model-free nonlinear regression. The development is based on the solvability condition, which attests that the ability to learn a specific learning set i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The universal approximation capability exhibited by one-hidden layer neural networks is explored to produce a supervised unit-growing learning for model-free nonlinear regression. The development is based on the solvability condition, which attests that the ability to learn a specific learning set increases with the number of nodes in the hidden layer. Since the training process operates the hidden nodes individually, a pertinent activation function can be iteratively developed for each node as a function of the learning set. The optimization of the solvability condition gives rise to neural networks of minimum dimension, an important step toward improving generalization. |
---|---|
DOI: | 10.1109/ICNN.1995.487519 |