Spatial planning for robotics operations
The rich variety of unmanned robotics at NASA's Jet Propulsion Laboratory sets the bar for innovations in activity planning. The Operations Planning Team at JPL, co-winner of the NASA Software of the Year award in 2004, is continuously working to enhance the capabilities and user experience for...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rich variety of unmanned robotics at NASA's Jet Propulsion Laboratory sets the bar for innovations in activity planning. The Operations Planning Team at JPL, co-winner of the NASA Software of the Year award in 2004, is continuously working to enhance the capabilities and user experience for long term and real-time planning operations. Spatial Querying improves the efficiency of planetary surface operations. It can empower scientists by giving them the ability to search for all imagery containing a particular point of interest. Furthermore, these queries can help maximizing the amount of science by reducing the amount of redundant imagery: before planning to acquire new images of a location, planners can check if they already have sufficient data for it. In this paper, we describe our use of R-Trees, along with novel 3D to 2D projections, to delivery spatial querying capabilities to the operators and scientists of MER and MSL mission. Aside from covering the implementation details, we discuss a key aspect of our software: the user interface. To make the interface effective, we stressed low latency and fast computations on the server side to emphasize instant gratification from the user's perspective. Furthermore, we leveraged the interfaces that our customers are already familiar with to make the capability intuitive to utilize. |
---|---|
ISSN: | 1095-323X 2996-2358 |
DOI: | 10.1109/AERO.2009.4839638 |