A General Proximity Privacy Principle
This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1282 |
---|---|
container_issue | |
container_start_page | 1279 |
container_title | |
container_volume | |
creator | Ting Wang Shicong Meng Bamba, B. Ling Liu Pu, C. |
description | This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy principle (epsiv,delta) k -dissimilarity, with theoretically guaranteed protection against linking attacks in terms of both exact and proximate QI-SA associations; we provided a theoretical analysis regarding the satisfiability of (epsiv,delta) k -dissimilarity, and pointed to promising solutions to fulfilling this principle. |
doi_str_mv | 10.1109/ICDE.2009.220 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4812520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4812520</ieee_id><sourcerecordid>4812520</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-acd965687821f5733c205a5e09743c18309d3c54e703a4e24075d88cf32878653</originalsourceid><addsrcrecordid>eNotjEtLw0AUhccXGGqWrtx04zLxPubOY1lirYWCLhTclWEygZG0lrSI_feG6tl8B85DqVuEGhH8w7J5nNcE4GsiOFOltw6s8cKixZyrgthKBWQ-Lk4ZatKa9di9VAWC4cqwo2tV7vefMMprRIFC3c-mi7RNQ-inr8PXT97kw3F0-TvEE7cx7_p0o6660O9T-c-Jen-avzXP1eplsWxmqyqjlUMVYuuNGGcdYSeWORJIkATeao7oGHzLUXSywEEn0mCldS52TOPGCE_U3d9vTimtd0PehOG41g5JCPgXHU1CFA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A General Proximity Privacy Principle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ting Wang ; Shicong Meng ; Bamba, B. ; Ling Liu ; Pu, C.</creator><creatorcontrib>Ting Wang ; Shicong Meng ; Bamba, B. ; Ling Liu ; Pu, C.</creatorcontrib><description>This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy principle (epsiv,delta) k -dissimilarity, with theoretically guaranteed protection against linking attacks in terms of both exact and proximate QI-SA associations; we provided a theoretical analysis regarding the satisfiability of (epsiv,delta) k -dissimilarity, and pointed to promising solutions to fulfilling this principle.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781424434220</identifier><identifier>ISBN: 142443422X</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 9780769535456</identifier><identifier>EISBN: 0769535453</identifier><identifier>DOI: 10.1109/ICDE.2009.220</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data engineering ; Data privacy ; Data security ; Diseases ; Educational institutions ; Information security ; Joining processes ; Protection ; Publishing ; Uncertainty</subject><ispartof>2009 IEEE 25th International Conference on Data Engineering, 2009, p.1279-1282</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4812520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4812520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ting Wang</creatorcontrib><creatorcontrib>Shicong Meng</creatorcontrib><creatorcontrib>Bamba, B.</creatorcontrib><creatorcontrib>Ling Liu</creatorcontrib><creatorcontrib>Pu, C.</creatorcontrib><title>A General Proximity Privacy Principle</title><title>2009 IEEE 25th International Conference on Data Engineering</title><addtitle>ICDE</addtitle><description>This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy principle (epsiv,delta) k -dissimilarity, with theoretically guaranteed protection against linking attacks in terms of both exact and proximate QI-SA associations; we provided a theoretical analysis regarding the satisfiability of (epsiv,delta) k -dissimilarity, and pointed to promising solutions to fulfilling this principle.</description><subject>Data engineering</subject><subject>Data privacy</subject><subject>Data security</subject><subject>Diseases</subject><subject>Educational institutions</subject><subject>Information security</subject><subject>Joining processes</subject><subject>Protection</subject><subject>Publishing</subject><subject>Uncertainty</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781424434220</isbn><isbn>142443422X</isbn><isbn>9780769535456</isbn><isbn>0769535453</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AUhccXGGqWrtx04zLxPubOY1lirYWCLhTclWEygZG0lrSI_feG6tl8B85DqVuEGhH8w7J5nNcE4GsiOFOltw6s8cKixZyrgthKBWQ-Lk4ZatKa9di9VAWC4cqwo2tV7vefMMprRIFC3c-mi7RNQ-inr8PXT97kw3F0-TvEE7cx7_p0o6660O9T-c-Jen-avzXP1eplsWxmqyqjlUMVYuuNGGcdYSeWORJIkATeao7oGHzLUXSywEEn0mCldS52TOPGCE_U3d9vTimtd0PehOG41g5JCPgXHU1CFA</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Ting Wang</creator><creator>Shicong Meng</creator><creator>Bamba, B.</creator><creator>Ling Liu</creator><creator>Pu, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200903</creationdate><title>A General Proximity Privacy Principle</title><author>Ting Wang ; Shicong Meng ; Bamba, B. ; Ling Liu ; Pu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-acd965687821f5733c205a5e09743c18309d3c54e703a4e24075d88cf32878653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data engineering</topic><topic>Data privacy</topic><topic>Data security</topic><topic>Diseases</topic><topic>Educational institutions</topic><topic>Information security</topic><topic>Joining processes</topic><topic>Protection</topic><topic>Publishing</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Ting Wang</creatorcontrib><creatorcontrib>Shicong Meng</creatorcontrib><creatorcontrib>Bamba, B.</creatorcontrib><creatorcontrib>Ling Liu</creatorcontrib><creatorcontrib>Pu, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ting Wang</au><au>Shicong Meng</au><au>Bamba, B.</au><au>Ling Liu</au><au>Pu, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A General Proximity Privacy Principle</atitle><btitle>2009 IEEE 25th International Conference on Data Engineering</btitle><stitle>ICDE</stitle><date>2009-03</date><risdate>2009</risdate><spage>1279</spage><epage>1282</epage><pages>1279-1282</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781424434220</isbn><isbn>142443422X</isbn><eisbn>9780769535456</eisbn><eisbn>0769535453</eisbn><abstract>This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy principle (epsiv,delta) k -dissimilarity, with theoretically guaranteed protection against linking attacks in terms of both exact and proximate QI-SA associations; we provided a theoretical analysis regarding the satisfiability of (epsiv,delta) k -dissimilarity, and pointed to promising solutions to fulfilling this principle.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2009.220</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6382 |
ispartof | 2009 IEEE 25th International Conference on Data Engineering, 2009, p.1279-1282 |
issn | 1063-6382 2375-026X |
language | eng |
recordid | cdi_ieee_primary_4812520 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data engineering Data privacy Data security Diseases Educational institutions Information security Joining processes Protection Publishing Uncertainty |
title | A General Proximity Privacy Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20General%20Proximity%20Privacy%20Principle&rft.btitle=2009%20IEEE%2025th%20International%20Conference%20on%20Data%20Engineering&rft.au=Ting%20Wang&rft.date=2009-03&rft.spage=1279&rft.epage=1282&rft.pages=1279-1282&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781424434220&rft.isbn_list=142443422X&rft_id=info:doi/10.1109/ICDE.2009.220&rft_dat=%3Cieee_6IE%3E4812520%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769535456&rft.eisbn_list=0769535453&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4812520&rfr_iscdi=true |