A General Proximity Privacy Principle

This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ting Wang, Shicong Meng, Bamba, B., Ling Liu, Pu, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy principle (epsiv,delta) k -dissimilarity, with theoretically guaranteed protection against linking attacks in terms of both exact and proximate QI-SA associations; we provided a theoretical analysis regarding the satisfiability of (epsiv,delta) k -dissimilarity, and pointed to promising solutions to fulfilling this principle.
ISSN:1063-6382
2375-026X
DOI:10.1109/ICDE.2009.220