A General Proximity Privacy Principle
This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a systematic study of the problem of protecting general proximity privacy, with findings applicable to most existing data models. Our contributions are multi-folded: we highlighted and formulated proximity privacy breaches in a data-model-neutral manner; we proposed a new privacy principle (epsiv,delta) k -dissimilarity, with theoretically guaranteed protection against linking attacks in terms of both exact and proximate QI-SA associations; we provided a theoretical analysis regarding the satisfiability of (epsiv,delta) k -dissimilarity, and pointed to promising solutions to fulfilling this principle. |
---|---|
ISSN: | 1063-6382 2375-026X |
DOI: | 10.1109/ICDE.2009.220 |