Microwave-Frequency Effects on Microplasma

Capacitively coupled microplasma generation becomes more efficient at microwave frequencies. Helium and argon microplasmas are characterized using excitation frequencies of 450 MHz, 900 MHz, and 1.8 GHz. These microplasmas are tested at both atmospheric pressure and 0.4 torr. We have experimentally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2009-06, Vol.37 (6), p.816-822
Hauptverfasser: Jun Xue, Hopwood, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Capacitively coupled microplasma generation becomes more efficient at microwave frequencies. Helium and argon microplasmas are characterized using excitation frequencies of 450 MHz, 900 MHz, and 1.8 GHz. These microplasmas are tested at both atmospheric pressure and 0.4 torr. We have experimentally determined the microplasma's electrical impedance, which consists of bulk plasma resistance and capacitive sheath reactance. These two parameters were measured by fitting theoretical power reflection coefficients to experimental forward and reflected microwave power as a function of frequency. Microplasma resistance decreases with increasing frequency, showing that the generation of free electrons depends on the driving frequency. In addition, the reactive sheath impedance and the microwave electrode voltage also decrease with an increase of frequency. A 3-D microplasma simulation shows that a narrower sheath width exists for higher frequency microplasma, and this is responsible for reducing the reactive impedance and the peak-to-peak electrode voltage. At higher microwave frequency, the decreased electrode voltage reduces both the plasma potential and the ion kinetic energy losses, thus increasing the electron density.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2009.2015453