Comparisons of classifier algorithms: Bayesian network, C4.5, decision forest and NBTree for Course Registration Planning model of undergraduate students
The success rate of computer science and engineering students in private universities are not high. It is helpful to find the model to assist students in registration planning. The objective of this research is to propose the classifier algorithm for building course registration planning model (CRPM...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The success rate of computer science and engineering students in private universities are not high. It is helpful to find the model to assist students in registration planning. The objective of this research is to propose the classifier algorithm for building course registration planning model (CRPM) from historical dataset. The algorithm is selected by comparing performances of four classifiers include Bayesian network, C4.5, Decision Forest and NBTree. The dataset were obtained from student enrollments including grade point average (GPA) and grades of undergraduate students whose majors were computer science or computer engineering. These dataset included grades in each subject of first and second year students from a private university in Thailand. Results showed that NBTree seemed to be the best of four classifiers which had highest prediction power. NBTree was used to generate CRP model which can be used to predict student class of GPA and consider student course sequences for registration planning. |
---|---|
ISSN: | 1062-922X 2577-1655 |
DOI: | 10.1109/ICSMC.2008.4811865 |