Activity-driven clock design for low power circuits

In this paper we investigate activity-driven clock trees to reduce the dynamic power consumption of synchronous digital CMOS circuits. Sections of an activity-driven clock tree can be turned on/off by gating the clock signals during the active/idle times of the clocked elements. We propose a method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tellez, G.E., Farrahi, A., Sarrafzadeh, M.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate activity-driven clock trees to reduce the dynamic power consumption of synchronous digital CMOS circuits. Sections of an activity-driven clock tree can be turned on/off by gating the clock signals during the active/idle times of the clocked elements. We propose a method of obtaining the switching activity patterns of the clocked circuits during the high level design process. We formulate three novel activity-driven problems. The objective of these problems is to minimize system's dynamic power consumption. We propose an approximation algorithm based on recursive matching to solve the clock tree construction problem. We solve the gate insertion problems with an exact algorithm employing the dynamic programming paradigm. Finally, we present experimental results that verify the effectiveness of our approach. Our work in this paper is a step in understanding how high level decisions (e.g. behavioral design) can affect a low level design (e.g. clock design).
ISSN:1063-6757
1092-3152
1558-2434
DOI:10.1109/ICCAD.1995.479992