Aesthetic Visual Quality Assessment of Paintings

This paper aims to evaluate the aesthetic visual quality of a special type of visual media: digital images of paintings. Assessing the aesthetic visual quality of paintings can be considered a highly subjective task. However, to some extent, certain paintings are believed, by consensus, to have high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2009-04, Vol.3 (2), p.236-252
Hauptverfasser: Li, Congcong, Chen, Tsuhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to evaluate the aesthetic visual quality of a special type of visual media: digital images of paintings. Assessing the aesthetic visual quality of paintings can be considered a highly subjective task. However, to some extent, certain paintings are believed, by consensus, to have higher aesthetic quality than others. In this paper, we treat this challenge as a machine learning problem, in order to evaluate the aesthetic quality of paintings based on their visual content. We design a group of methods to extract features to represent both the global characteristics and local characteristics of a painting. Inspiration for these features comes from our prior knowledge in art and a questionnaire survey we conducted to study factors that affect human's judgments. We collect painting images and ask human subjects to score them. These paintings are then used for both training and testing in our experiments. Experimental results show that the proposed work can classify high-quality and low-quality paintings with performance comparable to humans. This work provides a machine learning scheme for the research of exploring the relationship between aesthetic perceptions of human and the computational visual features extracted from paintings.
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2009.2015077