Coherency approach by hybrid PSO, K-Means clustering method in power system
This paper presents a new method for recognition the identical behaviors of synchronous generators for particular fault location on power system. In this method, a hybrid algorithm combining particle swarm optimization (PSO) algorithm with k-means algorithm, also referred to PSO-KM algorithm is prop...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new method for recognition the identical behaviors of synchronous generators for particular fault location on power system. In this method, a hybrid algorithm combining particle swarm optimization (PSO) algorithm with k-means algorithm, also referred to PSO-KM algorithm is proposed to find the specified number of clusters in electric network. Each cluster represents a number of generators such that these generators named coherent generators. Clustering process is based on similarity of time domain data in transient stability studies. The new algorithm is evaluated on 39-Bus New England test system. Results show that the proposed algorithm has much potential in finding coherent generators. |
---|---|
DOI: | 10.1109/PECON.2008.4762659 |