Parzen Discriminant Analysis

In this paper, we propose a non-parametric Discriminant Analysis method (no assumption on the distributions of classes), called Parzen Discriminant Analysis (PDA). Through a deep investigation on the non-parametric density estimation, we find that minimizing/maximizing the distances between each dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Youhan Fang, Shiguang Shan, Hong Chang, Xilin Chen, Gao, Wen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a non-parametric Discriminant Analysis method (no assumption on the distributions of classes), called Parzen Discriminant Analysis (PDA). Through a deep investigation on the non-parametric density estimation, we find that minimizing/maximizing the distances between each data sample and its nearby similar/dissimilar samples is equivalent to minimizing an upper bound of the Bayesian error rate. Based on this theoretical analysis, we define our criterion as maximizing the average local dissimilarity scatter with respect to a fixed average local similarity scatter. All local scatters are calculated in fixed size local regions, resembling the idea of Parzen estimation. Experiments in UCI machine learning database show that our method impressively outperforms other related neighbor based non-parametric methods.
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2008.4761903