Alternative similarity functions for graph kernels
Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kunegis, J. Lommatzsch, A. Bauckhage, C. |
description | Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions. |
doi_str_mv | 10.1109/ICPR.2008.4761801 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761801</ieee_id><sourcerecordid>4761801</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cde909a549bbfd09f0a15f94c53bd1e0e2f51180bae35586d0059bc5dd1079453</originalsourceid><addsrcrecordid>eNpVj81KAzEURuMfONY-gLiZF5h6b5I7SZZlsFooKNJ9yUwSjU6nJRmFvr0Fu3F1Ft_hg8PYHcIMEczDsnl9m3EAPZOqRg14xqZGaZRcSo6K6nNWcC2wUlLRxb9NmktWIBBWsia8Zjc5fwJwEKQLxuf96NNgx_jjyxy3sbcpjocyfA_dGHdDLsMule_J7j_Kr6Po-3zLroLts5-eOGHrxeO6ea5WL0_LZr6qooGx6pw3YCxJ07bBgQlgkYKRHYnWoQfPA-ExpLVeEOnaAZBpO3IOQRlJYsLu_26j936zT3Fr02Fzqhe_c8lJcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Alternative similarity functions for graph kernels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kunegis, J. ; Lommatzsch, A. ; Bauckhage, C.</creator><creatorcontrib>Kunegis, J. ; Lommatzsch, A. ; Bauckhage, C.</creatorcontrib><description>Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761801</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bipartite graph ; Collaboration ; Collaborative work ; Euclidean distance ; Filtering algorithms ; Kernel ; Laboratories ; Performance evaluation ; Predictive models ; Sparse matrices</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Bauckhage, C.</creatorcontrib><title>Alternative similarity functions for graph kernels</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.</description><subject>Bipartite graph</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Euclidean distance</subject><subject>Filtering algorithms</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Sparse matrices</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KAzEURuMfONY-gLiZF5h6b5I7SZZlsFooKNJ9yUwSjU6nJRmFvr0Fu3F1Ft_hg8PYHcIMEczDsnl9m3EAPZOqRg14xqZGaZRcSo6K6nNWcC2wUlLRxb9NmktWIBBWsia8Zjc5fwJwEKQLxuf96NNgx_jjyxy3sbcpjocyfA_dGHdDLsMule_J7j_Kr6Po-3zLroLts5-eOGHrxeO6ea5WL0_LZr6qooGx6pw3YCxJ07bBgQlgkYKRHYnWoQfPA-ExpLVeEOnaAZBpO3IOQRlJYsLu_26j936zT3Fr02Fzqhe_c8lJcQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Kunegis, J.</creator><creator>Lommatzsch, A.</creator><creator>Bauckhage, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Alternative similarity functions for graph kernels</title><author>Kunegis, J. ; Lommatzsch, A. ; Bauckhage, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cde909a549bbfd09f0a15f94c53bd1e0e2f51180bae35586d0059bc5dd1079453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bipartite graph</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Euclidean distance</topic><topic>Filtering algorithms</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Bauckhage, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kunegis, J.</au><au>Lommatzsch, A.</au><au>Bauckhage, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Alternative similarity functions for graph kernels</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761801</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2008 19th International Conference on Pattern Recognition, 2008, p.1-4 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_4761801 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bipartite graph Collaboration Collaborative work Euclidean distance Filtering algorithms Kernel Laboratories Performance evaluation Predictive models Sparse matrices |
title | Alternative similarity functions for graph kernels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Alternative%20similarity%20functions%20for%20graph%20kernels&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Kunegis,%20J.&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761801&rft_dat=%3Cieee_6IE%3E4761801%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761801&rfr_iscdi=true |