Alternative similarity functions for graph kernels

Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kunegis, J., Lommatzsch, A., Bauckhage, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Kunegis, J.
Lommatzsch, A.
Bauckhage, C.
description Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.
doi_str_mv 10.1109/ICPR.2008.4761801
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761801</ieee_id><sourcerecordid>4761801</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cde909a549bbfd09f0a15f94c53bd1e0e2f51180bae35586d0059bc5dd1079453</originalsourceid><addsrcrecordid>eNpVj81KAzEURuMfONY-gLiZF5h6b5I7SZZlsFooKNJ9yUwSjU6nJRmFvr0Fu3F1Ft_hg8PYHcIMEczDsnl9m3EAPZOqRg14xqZGaZRcSo6K6nNWcC2wUlLRxb9NmktWIBBWsia8Zjc5fwJwEKQLxuf96NNgx_jjyxy3sbcpjocyfA_dGHdDLsMule_J7j_Kr6Po-3zLroLts5-eOGHrxeO6ea5WL0_LZr6qooGx6pw3YCxJ07bBgQlgkYKRHYnWoQfPA-ExpLVeEOnaAZBpO3IOQRlJYsLu_26j936zT3Fr02Fzqhe_c8lJcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Alternative similarity functions for graph kernels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kunegis, J. ; Lommatzsch, A. ; Bauckhage, C.</creator><creatorcontrib>Kunegis, J. ; Lommatzsch, A. ; Bauckhage, C.</creatorcontrib><description>Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761801</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bipartite graph ; Collaboration ; Collaborative work ; Euclidean distance ; Filtering algorithms ; Kernel ; Laboratories ; Performance evaluation ; Predictive models ; Sparse matrices</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Bauckhage, C.</creatorcontrib><title>Alternative similarity functions for graph kernels</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.</description><subject>Bipartite graph</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Euclidean distance</subject><subject>Filtering algorithms</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Sparse matrices</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KAzEURuMfONY-gLiZF5h6b5I7SZZlsFooKNJ9yUwSjU6nJRmFvr0Fu3F1Ft_hg8PYHcIMEczDsnl9m3EAPZOqRg14xqZGaZRcSo6K6nNWcC2wUlLRxb9NmktWIBBWsia8Zjc5fwJwEKQLxuf96NNgx_jjyxy3sbcpjocyfA_dGHdDLsMule_J7j_Kr6Po-3zLroLts5-eOGHrxeO6ea5WL0_LZr6qooGx6pw3YCxJ07bBgQlgkYKRHYnWoQfPA-ExpLVeEOnaAZBpO3IOQRlJYsLu_26j936zT3Fr02Fzqhe_c8lJcQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Kunegis, J.</creator><creator>Lommatzsch, A.</creator><creator>Bauckhage, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Alternative similarity functions for graph kernels</title><author>Kunegis, J. ; Lommatzsch, A. ; Bauckhage, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cde909a549bbfd09f0a15f94c53bd1e0e2f51180bae35586d0059bc5dd1079453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bipartite graph</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Euclidean distance</topic><topic>Filtering algorithms</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Bauckhage, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kunegis, J.</au><au>Lommatzsch, A.</au><au>Bauckhage, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Alternative similarity functions for graph kernels</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761801</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761801
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bipartite graph
Collaboration
Collaborative work
Euclidean distance
Filtering algorithms
Kernel
Laboratories
Performance evaluation
Predictive models
Sparse matrices
title Alternative similarity functions for graph kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Alternative%20similarity%20functions%20for%20graph%20kernels&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Kunegis,%20J.&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761801&rft_dat=%3Cieee_6IE%3E4761801%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761801&rfr_iscdi=true