Alternative similarity functions for graph kernels

Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kunegis, J., Lommatzsch, A., Bauckhage, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a bipartite graph of collaborative ratings, the task of recommendation and rating prediction can be modeled with graph kernels. We interpret these graph kernels as the inverted squared Euclidean distance in a space defined by the underlying graph and show that this inverted squared Euclidean similarity function can be replaced by other similarity functions. We evaluate several such similarity functions in the context of collaborative item recommendation and rating prediction, using the exponential diffusion kernel, the von Neumann kernel, and the random forest kernel as a basis. We find that the performance of graph kernels for these tasks can be increased by using these alternative similarity functions.
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2008.4761801