Graph-based classification for multiple observations of transformed patterns
We consider the problem of classification when multiple observations of a pattern are available, possibly under different transformations. We view this problem as a special case of semi-supervised learning where all the unlabelled samples belong to the same unknown class. We build on graph-based met...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of classification when multiple observations of a pattern are available, possibly under different transformations. We view this problem as a special case of semi-supervised learning where all the unlabelled samples belong to the same unknown class. We build on graph-based methods for semi-supervised learning and we optimize the graph construction in order to exploit the special structure of the problem. In particular, we assume that the optimal adjacency matrix is a linear combination of all possible class-conditional ideal adjacency matrices. We formulate the construction of the optimal adjacency matrix as a linear program (LP) on the weights of the linear combination. We provide experimental results that show the effectiveness and the validity of the proposed methodology. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2008.4761376 |