Investigation of time-reversal processing for surface-penetrating radar detection in a multiple-target configuration

This paper presents detection and imaging capabilities of a simple time-reversal focusing algorithm, applied to experimental data that are obtained under various radar scene configurations (single- or multiple-target in free-space or through-the-wall). Data are collected with the ultra-wideband surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cresp, A., Aliferis, I., Yedlin, M.J., Pichot, C., Dauvignac, J.-Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents detection and imaging capabilities of a simple time-reversal focusing algorithm, applied to experimental data that are obtained under various radar scene configurations (single- or multiple-target in free-space or through-the-wall). Data are collected with the ultra-wideband surface penetrating radar SIMIS (synthetic-impulse microwave imaging system, designed in LEAT) which operates almost from dc up to 18 GHz. The algorithm propagates time-reversed received signals in a supposedly known medium (either free-space or through a wall with known parameters) using a simple dipole model for the antennas. At each time step, an image of the scene is obtained, corresponding to the instantaneous electric-field energy in each pixel. A focusing criterion, looking for a minimum of entropy combined with a maximum of energy in the image, automatically selects the optimum frame, shown here. Two free-space (dielectric target, dielectric and metallic target) and one through-the-wall (dielectric target) configurations are investigated, showing the efficiency of the method.