Thermal process robust identification using wavelet de-noise and least-squares method
Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1951 |
---|---|
container_issue | |
container_start_page | 1948 |
container_title | |
container_volume | |
creator | Changliang Liu Taoyong Li Wei Cen Yanchen Jia |
description | Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result. |
doi_str_mv | 10.1109/IECON.2008.4758254 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4758254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4758254</ieee_id><sourcerecordid>4758254</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4041d44458c1814127aa804cd33c12b9a15ac50d6f2b6e837da96cefd46617653</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMqWGtfQDd5galJ5uZnllKqFordjOCu3CZ3bGQ6Uyep4ttbsBtXh7P5ON9h7FaKqZSiul_MZ6uXqRLCTcFqpzScsUllnQQFIK0x9vxft3DBRlLrstBWvV2x65Q-hNDgjByx13pLww5bvh96Tynxod8cUuYxUJdjEz3m2Hf8kGL3zr_xi1rKPFDR9TERxy7wljDlIn0ecKDEd5S3fbhhlw22iSanHLP6cV7Pnovl6mkxe1gWsRK5AAEyAIB2Xh7XSmURnQAfytJLtalQavRaBNOojSFX2oCV8dQEMObopcsxu_vDRiJa74e4w-FnfTql_AUeWFR3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal process robust identification using wavelet de-noise and least-squares method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changliang Liu ; Taoyong Li ; Wei Cen ; Yanchen Jia</creator><creatorcontrib>Changliang Liu ; Taoyong Li ; Wei Cen ; Yanchen Jia</creatorcontrib><description>Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781424417674</identifier><identifier>ISBN: 1424417678</identifier><identifier>EISBN: 9781424417667</identifier><identifier>EISBN: 142441766X</identifier><identifier>DOI: 10.1109/IECON.2008.4758254</identifier><language>eng</language><publisher>IEEE</publisher><subject>Colored noise ; Multiresolution analysis ; Noise measurement ; Noise robustness ; Nonlinear dynamical systems ; Parameter estimation ; Power engineering and energy ; Power system modeling ; System identification ; Thermal engineering ; Transfer functions ; Unmodeled dynamics ; Wavelet De-noise</subject><ispartof>2008 34th Annual Conference of IEEE Industrial Electronics, 2008, p.1948-1951</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4758254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4758254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changliang Liu</creatorcontrib><creatorcontrib>Taoyong Li</creatorcontrib><creatorcontrib>Wei Cen</creatorcontrib><creatorcontrib>Yanchen Jia</creatorcontrib><title>Thermal process robust identification using wavelet de-noise and least-squares method</title><title>2008 34th Annual Conference of IEEE Industrial Electronics</title><addtitle>IECON</addtitle><description>Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.</description><subject>Colored noise</subject><subject>Multiresolution analysis</subject><subject>Noise measurement</subject><subject>Noise robustness</subject><subject>Nonlinear dynamical systems</subject><subject>Parameter estimation</subject><subject>Power engineering and energy</subject><subject>Power system modeling</subject><subject>System identification</subject><subject>Thermal engineering</subject><subject>Transfer functions</subject><subject>Unmodeled dynamics</subject><subject>Wavelet De-noise</subject><issn>1553-572X</issn><isbn>9781424417674</isbn><isbn>1424417678</isbn><isbn>9781424417667</isbn><isbn>142441766X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMqWGtfQDd5galJ5uZnllKqFordjOCu3CZ3bGQ6Uyep4ttbsBtXh7P5ON9h7FaKqZSiul_MZ6uXqRLCTcFqpzScsUllnQQFIK0x9vxft3DBRlLrstBWvV2x65Q-hNDgjByx13pLww5bvh96Tynxod8cUuYxUJdjEz3m2Hf8kGL3zr_xi1rKPFDR9TERxy7wljDlIn0ecKDEd5S3fbhhlw22iSanHLP6cV7Pnovl6mkxe1gWsRK5AAEyAIB2Xh7XSmURnQAfytJLtalQavRaBNOojSFX2oCV8dQEMObopcsxu_vDRiJa74e4w-FnfTql_AUeWFR3</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Changliang Liu</creator><creator>Taoyong Li</creator><creator>Wei Cen</creator><creator>Yanchen Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200811</creationdate><title>Thermal process robust identification using wavelet de-noise and least-squares method</title><author>Changliang Liu ; Taoyong Li ; Wei Cen ; Yanchen Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4041d44458c1814127aa804cd33c12b9a15ac50d6f2b6e837da96cefd46617653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Colored noise</topic><topic>Multiresolution analysis</topic><topic>Noise measurement</topic><topic>Noise robustness</topic><topic>Nonlinear dynamical systems</topic><topic>Parameter estimation</topic><topic>Power engineering and energy</topic><topic>Power system modeling</topic><topic>System identification</topic><topic>Thermal engineering</topic><topic>Transfer functions</topic><topic>Unmodeled dynamics</topic><topic>Wavelet De-noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Changliang Liu</creatorcontrib><creatorcontrib>Taoyong Li</creatorcontrib><creatorcontrib>Wei Cen</creatorcontrib><creatorcontrib>Yanchen Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changliang Liu</au><au>Taoyong Li</au><au>Wei Cen</au><au>Yanchen Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal process robust identification using wavelet de-noise and least-squares method</atitle><btitle>2008 34th Annual Conference of IEEE Industrial Electronics</btitle><stitle>IECON</stitle><date>2008-11</date><risdate>2008</risdate><spage>1948</spage><epage>1951</epage><pages>1948-1951</pages><issn>1553-572X</issn><isbn>9781424417674</isbn><isbn>1424417678</isbn><eisbn>9781424417667</eisbn><eisbn>142441766X</eisbn><abstract>Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2008.4758254</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1553-572X |
ispartof | 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, p.1948-1951 |
issn | 1553-572X |
language | eng |
recordid | cdi_ieee_primary_4758254 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Colored noise Multiresolution analysis Noise measurement Noise robustness Nonlinear dynamical systems Parameter estimation Power engineering and energy Power system modeling System identification Thermal engineering Transfer functions Unmodeled dynamics Wavelet De-noise |
title | Thermal process robust identification using wavelet de-noise and least-squares method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20process%20robust%20identification%20using%20wavelet%20de-noise%20and%20least-squares%20method&rft.btitle=2008%2034th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics&rft.au=Changliang%20Liu&rft.date=2008-11&rft.spage=1948&rft.epage=1951&rft.pages=1948-1951&rft.issn=1553-572X&rft.isbn=9781424417674&rft.isbn_list=1424417678&rft_id=info:doi/10.1109/IECON.2008.4758254&rft_dat=%3Cieee_6IE%3E4758254%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424417667&rft.eisbn_list=142441766X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4758254&rfr_iscdi=true |