Thermal process robust identification using wavelet de-noise and least-squares method

Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changliang Liu, Taoyong Li, Wei Cen, Yanchen Jia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1951
container_issue
container_start_page 1948
container_title
container_volume
creator Changliang Liu
Taoyong Li
Wei Cen
Yanchen Jia
description Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.
doi_str_mv 10.1109/IECON.2008.4758254
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4758254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4758254</ieee_id><sourcerecordid>4758254</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4041d44458c1814127aa804cd33c12b9a15ac50d6f2b6e837da96cefd46617653</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMqWGtfQDd5galJ5uZnllKqFordjOCu3CZ3bGQ6Uyep4ttbsBtXh7P5ON9h7FaKqZSiul_MZ6uXqRLCTcFqpzScsUllnQQFIK0x9vxft3DBRlLrstBWvV2x65Q-hNDgjByx13pLww5bvh96Tynxod8cUuYxUJdjEz3m2Hf8kGL3zr_xi1rKPFDR9TERxy7wljDlIn0ecKDEd5S3fbhhlw22iSanHLP6cV7Pnovl6mkxe1gWsRK5AAEyAIB2Xh7XSmURnQAfytJLtalQavRaBNOojSFX2oCV8dQEMObopcsxu_vDRiJa74e4w-FnfTql_AUeWFR3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal process robust identification using wavelet de-noise and least-squares method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changliang Liu ; Taoyong Li ; Wei Cen ; Yanchen Jia</creator><creatorcontrib>Changliang Liu ; Taoyong Li ; Wei Cen ; Yanchen Jia</creatorcontrib><description>Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781424417674</identifier><identifier>ISBN: 1424417678</identifier><identifier>EISBN: 9781424417667</identifier><identifier>EISBN: 142441766X</identifier><identifier>DOI: 10.1109/IECON.2008.4758254</identifier><language>eng</language><publisher>IEEE</publisher><subject>Colored noise ; Multiresolution analysis ; Noise measurement ; Noise robustness ; Nonlinear dynamical systems ; Parameter estimation ; Power engineering and energy ; Power system modeling ; System identification ; Thermal engineering ; Transfer functions ; Unmodeled dynamics ; Wavelet De-noise</subject><ispartof>2008 34th Annual Conference of IEEE Industrial Electronics, 2008, p.1948-1951</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4758254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4758254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changliang Liu</creatorcontrib><creatorcontrib>Taoyong Li</creatorcontrib><creatorcontrib>Wei Cen</creatorcontrib><creatorcontrib>Yanchen Jia</creatorcontrib><title>Thermal process robust identification using wavelet de-noise and least-squares method</title><title>2008 34th Annual Conference of IEEE Industrial Electronics</title><addtitle>IECON</addtitle><description>Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.</description><subject>Colored noise</subject><subject>Multiresolution analysis</subject><subject>Noise measurement</subject><subject>Noise robustness</subject><subject>Nonlinear dynamical systems</subject><subject>Parameter estimation</subject><subject>Power engineering and energy</subject><subject>Power system modeling</subject><subject>System identification</subject><subject>Thermal engineering</subject><subject>Transfer functions</subject><subject>Unmodeled dynamics</subject><subject>Wavelet De-noise</subject><issn>1553-572X</issn><isbn>9781424417674</isbn><isbn>1424417678</isbn><isbn>9781424417667</isbn><isbn>142441766X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMqWGtfQDd5galJ5uZnllKqFordjOCu3CZ3bGQ6Uyep4ttbsBtXh7P5ON9h7FaKqZSiul_MZ6uXqRLCTcFqpzScsUllnQQFIK0x9vxft3DBRlLrstBWvV2x65Q-hNDgjByx13pLww5bvh96Tynxod8cUuYxUJdjEz3m2Hf8kGL3zr_xi1rKPFDR9TERxy7wljDlIn0ecKDEd5S3fbhhlw22iSanHLP6cV7Pnovl6mkxe1gWsRK5AAEyAIB2Xh7XSmURnQAfytJLtalQavRaBNOojSFX2oCV8dQEMObopcsxu_vDRiJa74e4w-FnfTql_AUeWFR3</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Changliang Liu</creator><creator>Taoyong Li</creator><creator>Wei Cen</creator><creator>Yanchen Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200811</creationdate><title>Thermal process robust identification using wavelet de-noise and least-squares method</title><author>Changliang Liu ; Taoyong Li ; Wei Cen ; Yanchen Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4041d44458c1814127aa804cd33c12b9a15ac50d6f2b6e837da96cefd46617653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Colored noise</topic><topic>Multiresolution analysis</topic><topic>Noise measurement</topic><topic>Noise robustness</topic><topic>Nonlinear dynamical systems</topic><topic>Parameter estimation</topic><topic>Power engineering and energy</topic><topic>Power system modeling</topic><topic>System identification</topic><topic>Thermal engineering</topic><topic>Transfer functions</topic><topic>Unmodeled dynamics</topic><topic>Wavelet De-noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Changliang Liu</creatorcontrib><creatorcontrib>Taoyong Li</creatorcontrib><creatorcontrib>Wei Cen</creatorcontrib><creatorcontrib>Yanchen Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changliang Liu</au><au>Taoyong Li</au><au>Wei Cen</au><au>Yanchen Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal process robust identification using wavelet de-noise and least-squares method</atitle><btitle>2008 34th Annual Conference of IEEE Industrial Electronics</btitle><stitle>IECON</stitle><date>2008-11</date><risdate>2008</risdate><spage>1948</spage><epage>1951</epage><pages>1948-1951</pages><issn>1553-572X</issn><isbn>9781424417674</isbn><isbn>1424417678</isbn><eisbn>9781424417667</eisbn><eisbn>142441766X</eisbn><abstract>Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2008.4758254</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, p.1948-1951
issn 1553-572X
language eng
recordid cdi_ieee_primary_4758254
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Colored noise
Multiresolution analysis
Noise measurement
Noise robustness
Nonlinear dynamical systems
Parameter estimation
Power engineering and energy
Power system modeling
System identification
Thermal engineering
Transfer functions
Unmodeled dynamics
Wavelet De-noise
title Thermal process robust identification using wavelet de-noise and least-squares method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20process%20robust%20identification%20using%20wavelet%20de-noise%20and%20least-squares%20method&rft.btitle=2008%2034th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics&rft.au=Changliang%20Liu&rft.date=2008-11&rft.spage=1948&rft.epage=1951&rft.pages=1948-1951&rft.issn=1553-572X&rft.isbn=9781424417674&rft.isbn_list=1424417678&rft_id=info:doi/10.1109/IECON.2008.4758254&rft_dat=%3Cieee_6IE%3E4758254%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424417667&rft.eisbn_list=142441766X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4758254&rfr_iscdi=true