Thermal process robust identification using wavelet de-noise and least-squares method

Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changliang Liu, Taoyong Li, Wei Cen, Yanchen Jia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmodeled dynamics exit when modeling with transfer function model set for thermal process. Unmodeled dynamics and stochastic disturbances are considered as colored noise which makes least-squares estimates bias. De-colored noise using wavelet MRA is beneficial to enhance identification accuracy and robust. This is also proved by simulation with a linear time-invariant system. The proposed method processed operation data comes from thermal process and got satisfying result.
ISSN:1553-572X
DOI:10.1109/IECON.2008.4758254