GARCH model-based large-scale IP traffic matrix estimation
This letter proposes a novel method to estimate large-scale IP traffic matrix (TM). By using the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to model the Origin-Destination (OD) flows, we can easily get rid of the ill-posed problem of large-scale IP TM. Compared with previous m...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2009-01, Vol.13 (1), p.52-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter proposes a novel method to estimate large-scale IP traffic matrix (TM). By using the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to model the Origin-Destination (OD) flows, we can easily get rid of the ill-posed problem of large-scale IP TM. Compared with previous methods, our method does not only hold the lower estimation errors but also is more robust to the noise. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2008.081271 |