GARCH model-based large-scale IP traffic matrix estimation

This letter proposes a novel method to estimate large-scale IP traffic matrix (TM). By using the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to model the Origin-Destination (OD) flows, we can easily get rid of the ill-posed problem of large-scale IP TM. Compared with previous m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2009-01, Vol.13 (1), p.52-54
Hauptverfasser: Jiang, Dingde, Hu, Guangmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a novel method to estimate large-scale IP traffic matrix (TM). By using the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to model the Origin-Destination (OD) flows, we can easily get rid of the ill-posed problem of large-scale IP TM. Compared with previous methods, our method does not only hold the lower estimation errors but also is more robust to the noise.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2008.081271