Dynamic Self-Rescheduling of Tasks over a Heterogeneous Platform

Modern applications require powerful high-performance platforms to deal with many different algorithms that make use of massive calculations. At the same time, low-cost and high-performance specific hardware (e.g., GPU, PPU) are rising and the CPUs turned to multiple cores, characterizing together a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Binotto, A.P.D., Freitas, E.P., Gotz, M., Pereira, C.E., Stork, A., Larsson, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern applications require powerful high-performance platforms to deal with many different algorithms that make use of massive calculations. At the same time, low-cost and high-performance specific hardware (e.g., GPU, PPU) are rising and the CPUs turned to multiple cores, characterizing together an interesting and powerful heterogeneous execution platform. Therefore, self-adaptive computing is a potential paradigm for those scenarios as it can provide flexibility to explore the computational resources on heterogeneous cluster attached to a high-performance computer system platform. As the first step towards a run-time reschedule load-balancing framework targeting that kind of platform, application time requirements and its crosscutting behavior play an important role for task allocation decisions. This paper presents a strategy for self-reallocation of specific tasks, including dynamic created ones, using aspect-oriented paradigms to address non-functional application timing constraints in the design phase. Additionally, as a case study, a special attention on radar image processing will be given in the context of a surveillance system based on unmanned aerial vehicles (UAV).
ISSN:2325-6532
2640-0472
DOI:10.1109/ReConFig.2008.69