Self-reduction of programming current density with deep phase-change memory scaling

It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Savransky, S.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Savransky, S.D.
description It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming current than simple geometrical scaling predicts. As the result the current density necessary to program phase-change memory decreases with characteristic size of active volume of a phase-change alloy.
doi_str_mv 10.1109/NVMT.2008.4731191
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4731191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4731191</ieee_id><sourcerecordid>4731191</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-10a5d67278f62e2937c2cce9d174db591e8060e20d7efef4f607bac57a1453</originalsourceid><addsrcrecordid>eNotkF9LwzAUxSMy0M1-APElX6D1Jk2T5lGGOmEqsuHryNKbNtJ_pB3Sb2_VXS5cfnDu4XAIuWWQMAb6_u3zdZ9wgDwRKmVMswuyZIKLeWe6JJFW-R-nMtOwIMtfrYaUK31FomH4gnlElspcX5PdDmsXByxOdvRdSztH-9CVwTSNb0tqTyFgO9IC28GPE_32YzUD9rSvzICxrUxbIm2w6cJEB2vq-euGLJypB4zOd0U-nh736028fX9-WT9sY69hjBmYrJCKq9xJjlynynJrURdMieKYaYY5SEAOhUKHTjgJ6mhspgybw6_I3b-nR8RDH3xjwnQ4F5L-ADSTUx8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-reduction of programming current density with deep phase-change memory scaling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Savransky, S.D.</creator><creatorcontrib>Savransky, S.D.</creatorcontrib><description>It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming current than simple geometrical scaling predicts. As the result the current density necessary to program phase-change memory decreases with characteristic size of active volume of a phase-change alloy.</description><identifier>ISBN: 9781424436590</identifier><identifier>ISBN: 1424436591</identifier><identifier>EISBN: 1424424119</identifier><identifier>EISBN: 9781424424115</identifier><identifier>DOI: 10.1109/NVMT.2008.4731191</identifier><identifier>LCCN: 2008903279</identifier><language>eng</language><publisher>IEEE</publisher><subject>Crystallization ; Current density ; Electrodes ; Phase change materials ; Phase change memory ; physical effects at nanoscale ; Principal component analysis ; programming current ; Resistance heating ; scaling ; Temperature ; Thermal conductivity ; Threshold voltage</subject><ispartof>2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS), 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4731191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4731191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Savransky, S.D.</creatorcontrib><title>Self-reduction of programming current density with deep phase-change memory scaling</title><title>2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS)</title><addtitle>NVMT</addtitle><description>It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming current than simple geometrical scaling predicts. As the result the current density necessary to program phase-change memory decreases with characteristic size of active volume of a phase-change alloy.</description><subject>Crystallization</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Phase change materials</subject><subject>Phase change memory</subject><subject>physical effects at nanoscale</subject><subject>Principal component analysis</subject><subject>programming current</subject><subject>Resistance heating</subject><subject>scaling</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Threshold voltage</subject><isbn>9781424436590</isbn><isbn>1424436591</isbn><isbn>1424424119</isbn><isbn>9781424424115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkF9LwzAUxSMy0M1-APElX6D1Jk2T5lGGOmEqsuHryNKbNtJ_pB3Sb2_VXS5cfnDu4XAIuWWQMAb6_u3zdZ9wgDwRKmVMswuyZIKLeWe6JJFW-R-nMtOwIMtfrYaUK31FomH4gnlElspcX5PdDmsXByxOdvRdSztH-9CVwTSNb0tqTyFgO9IC28GPE_32YzUD9rSvzICxrUxbIm2w6cJEB2vq-euGLJypB4zOd0U-nh736028fX9-WT9sY69hjBmYrJCKq9xJjlynynJrURdMieKYaYY5SEAOhUKHTjgJ6mhspgybw6_I3b-nR8RDH3xjwnQ4F5L-ADSTUx8</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Savransky, S.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Self-reduction of programming current density with deep phase-change memory scaling</title><author>Savransky, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-10a5d67278f62e2937c2cce9d174db591e8060e20d7efef4f607bac57a1453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Crystallization</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Phase change materials</topic><topic>Phase change memory</topic><topic>physical effects at nanoscale</topic><topic>Principal component analysis</topic><topic>programming current</topic><topic>Resistance heating</topic><topic>scaling</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Threshold voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Savransky, S.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Savransky, S.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-reduction of programming current density with deep phase-change memory scaling</atitle><btitle>2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS)</btitle><stitle>NVMT</stitle><date>2008-11</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781424436590</isbn><isbn>1424436591</isbn><eisbn>1424424119</eisbn><eisbn>9781424424115</eisbn><abstract>It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming current than simple geometrical scaling predicts. As the result the current density necessary to program phase-change memory decreases with characteristic size of active volume of a phase-change alloy.</abstract><pub>IEEE</pub><doi>10.1109/NVMT.2008.4731191</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424436590
ispartof 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS), 2008, p.1-4
issn
language eng
recordid cdi_ieee_primary_4731191
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Crystallization
Current density
Electrodes
Phase change materials
Phase change memory
physical effects at nanoscale
Principal component analysis
programming current
Resistance heating
scaling
Temperature
Thermal conductivity
Threshold voltage
title Self-reduction of programming current density with deep phase-change memory scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-reduction%20of%20programming%20current%20density%20with%20deep%20phase-change%20memory%20scaling&rft.btitle=2008%209th%20Annual%20Non-Volatile%20Memory%20Technology%20Symposium%20(NVMTS)&rft.au=Savransky,%20S.D.&rft.date=2008-11&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781424436590&rft.isbn_list=1424436591&rft_id=info:doi/10.1109/NVMT.2008.4731191&rft_dat=%3Cieee_6IE%3E4731191%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424424119&rft.eisbn_list=9781424424115&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4731191&rfr_iscdi=true