Self-reduction of programming current density with deep phase-change memory scaling
It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that different physical factors point to characteristic size about 3 nm as the ultimate scaling limit for phase-change memory based on nucleation driven alloys. Size-dependences of melting temperature and thermal conductivity for sizes below 10 nm lead to faster reduction of programming current than simple geometrical scaling predicts. As the result the current density necessary to program phase-change memory decreases with characteristic size of active volume of a phase-change alloy. |
---|---|
DOI: | 10.1109/NVMT.2008.4731191 |