Dynamic Multiple Fault Diagnosis: Mathematical Formulations and Solution Techniques

Imperfect test outcomes, due to factors such as unreliable sensors, electromagnetic interference, and environmental conditions, manifest themselves as missed detections and false alarms. This paper develops near-optimal algorithms for dynamic multiple fault diagnosis (DMFD) problems in the presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.160-176
Hauptverfasser: Singh, S., Kodali, A., Choi, K., Pattipati, K.R., Namburu, S.M., Sean, S.C., Prokhorov, D.V., Qiao, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imperfect test outcomes, due to factors such as unreliable sensors, electromagnetic interference, and environmental conditions, manifest themselves as missed detections and false alarms. This paper develops near-optimal algorithms for dynamic multiple fault diagnosis (DMFD) problems in the presence of imperfect test outcomes. The DMFD problem is to determine the most likely evolution of component states, the one that best explains the observed test outcomes. Here, we discuss four formulations of the DMFD problem. These include the deterministic situation corresponding to perfectly observed coupled Markov decision processes to several partially observed factorial hidden Markov models ranging from the case where the imperfect test outcomes are functions of tests only to the case where the test outcomes are functions of faults and tests, as well as the case where the false alarms are associated with the nominal (fault free) case only. All these formulations are intractable NP-hard combinatorial optimization problems. Our solution scheme can be viewed as a two-level coordinated solution framework for the DMFD problem. At the top (coordination) level, we update the Lagrange multipliers (coordination variables, dual variables) using the subgradient method. At the bottom level, we use a dynamic programming technique (specifically, the Viterbi decoding or Max-sum algorithm) to solve each of the subproblems, one for each component state sequence. The key advantage of our approach is that it provides an approximate duality gap, which is a measure of the suboptimality of the DMFD solution. Computational results on real-world problems are presented. A detailed performance analysis of the proposed algorithm is also discussed.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2008.2007986