Novel nano-hybrid gas sensor based on n-TiO2 functionalized by phthalocyanines via supersonic beam co-deposition: Performance and application to automotive air quality

Supersonic beams of TiO 2 clusters and metal phthalocyanines have been developed for the synthesis of hybrid for gas-sensing applications. This approach allows high degree of control on the properties of the synthesized materials and on the interface between clusters and organic molecules, so that n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iannotta, S., Toccoli, T., Tonezzer, M., Pallaoro, A., Corradi, C., Mazzola, M., Coppede, N., Siviero, F., Forleo, A., Siciliano, P., Lattore, M., Marzorati, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supersonic beams of TiO 2 clusters and metal phthalocyanines have been developed for the synthesis of hybrid for gas-sensing applications. This approach allows high degree of control on the properties of the synthesized materials and on the interface between clusters and organic molecules, so that new functional materials with novel and promising sensing properties are obtained. These materials can be synthesized in different architectures, shape and phases, and are constituted by nanocrystalline clusters of TiO 2 functionalized during the growth by the co-deposited molecules. The outcome is a porous nanostructured material characterized by a diffused organic-inorganic interface at the nanoscale. The properties of the codeposited interfaces, where the functionalization of the hybrid material plays a crucial role, can be tailored directly acting on the beam parameters of the cluster (mass size distribution, phase) and of the organic molecules (kinetic energy, deposition rate).
ISSN:1930-0395
2168-9229
DOI:10.1109/ICSENS.2008.4716730