Learning structurally discriminant features in 3D faces
In this paper, we derive a data mining framework to analyze 3D features on human faces. The framework leverages kernel density estimators, genetic algorithm and an information complexity criterion to identify discriminant feature-clusters of lower dimensionality. We apply this framework on human fac...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we derive a data mining framework to analyze 3D features on human faces. The framework leverages kernel density estimators, genetic algorithm and an information complexity criterion to identify discriminant feature-clusters of lower dimensionality. We apply this framework on human face anthropometry data of 32 features collected from each of the 300 3D face mesh models. The feature-subsets that we infer as the output establishes domain knowledge for the challenging problem of 3D face recognition with dense 3D gallery models and sparse or low resolution probes. |
---|---|
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2008.4712154 |