Learning structurally discriminant features in 3D faces

In this paper, we derive a data mining framework to analyze 3D features on human faces. The framework leverages kernel density estimators, genetic algorithm and an information complexity criterion to identify discriminant feature-clusters of lower dimensionality. We apply this framework on human fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sukumar, S.R., Bozdogan, H., Page, D.L., Koschan, A.F., Abidi, M.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we derive a data mining framework to analyze 3D features on human faces. The framework leverages kernel density estimators, genetic algorithm and an information complexity criterion to identify discriminant feature-clusters of lower dimensionality. We apply this framework on human face anthropometry data of 32 features collected from each of the 300 3D face mesh models. The feature-subsets that we infer as the output establishes domain knowledge for the challenging problem of 3D face recognition with dense 3D gallery models and sparse or low resolution probes.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2008.4712154