A framework for dense optical flow from multiple sparse hypotheses

Optical flow forms an important initial processing stage for many machine vision tasks. A framework is presented for the recovery of dense optical flows from image sequences containing large motions. Sparse feature correspondences are used to assign multiple optical flow hypotheses to each image pix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Smith, T.M.A., Redmill, D.W., Canagarajah, C.N., Bull, D.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical flow forms an important initial processing stage for many machine vision tasks. A framework is presented for the recovery of dense optical flows from image sequences containing large motions. Sparse feature correspondences are used to assign multiple optical flow hypotheses to each image pixel which are then independently refined to produce a further set of refined hypotheses. One final flow is selected for each pixel from these refined flows by seeking to minimize the local matching error. Dense optical flows from image sequences with small motions are successfully recovered. In image sequences with very large motions, a clear increase in optical flow accuracy is observed when compared to a hierarchical approach to optical flow estimation.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2008.4711885