FPGA implementation of 4-channel ICA for on-line EEG signal separation
Blind source separation of independent sources from their mixtures is a common problem for multi-sensor applications in real world, for example, speech or biomedical signal processing. This paper presents an independent component analysis (ICA) method with information maximization (Infomax) update a...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blind source separation of independent sources from their mixtures is a common problem for multi-sensor applications in real world, for example, speech or biomedical signal processing. This paper presents an independent component analysis (ICA) method with information maximization (Infomax) update applied into 4-channel one-line EEG signal separation. This can be implemented on FPGA with a fixed-point number representation, and then the separated signals are transmitted via Bluetooth. As experimental results, the proposed design is faster 56 times than soft performance, and the correlation coefficients at least 80% with the absolute value are compared with off-line processing results. Finally, live demonstration is shown in the DE2 FPGA board, and the design is consisted of 16,605 logic elements. |
---|---|
ISSN: | 2163-4025 2766-4465 |
DOI: | 10.1109/BIOCAS.2008.4696875 |