Robust H∞ fuzzy control for a mini aviation engine speed regulation
Classical gain scheduling speed regulation method provides no guarantees for closed-loop system stability or performances for the full operating range of an engine due to the existence of nonlinear behavior, multiple operating conditions etc. In this work, a systematic fuzzy gain scheduling method i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classical gain scheduling speed regulation method provides no guarantees for closed-loop system stability or performances for the full operating range of an engine due to the existence of nonlinear behavior, multiple operating conditions etc. In this work, a systematic fuzzy gain scheduling method is applied on speed control for a two-stroke, electronic fuel injection engine based on the Takagi-Sugeno (T-S) fuzzy system. A physical nonlinear model of the engine is presented and transformed into a fuzzy T-S model formulation. Based on the T-S model, the stabilization problem of the engine speed is studied, and a sufficient condition for the existence of controller with H infin attenuation and the design techniques are presented. The proposed control design is validated using both nonlinear off-line simulations and real-time hardware-in-the-loop (HIL) implementation. The results show that the proposed T-S fuzzy controller can meet the performance requirements for the unmanned helicopter engine use, namely racking performance, disturbance rejection and robustness. |
---|---|
ISSN: | 1938-8756 |
DOI: | 10.1109/VPPC.2008.4677642 |