Metrology for the Electrical Characterization of Semiconductor Nanowires
Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2008-11, Vol.55 (11), p.3086-3095 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3095 |
---|---|
container_issue | 11 |
container_start_page | 3086 |
container_title | IEEE transactions on electron devices |
container_volume | 55 |
creator | Richter, Curt A. Xiong, Hao D. Zhu, Xiaoxiao Wang, Wenyong Stanford, Vincent M. Hong, Woong-Ki Lee, Takhee Ioannou, Dimitris E. Li, Qiliang |
description | Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices. |
doi_str_mv | 10.1109/TED.2008.2005394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4668556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4668556</ieee_id><sourcerecordid>875042697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</originalsourceid><addsrcrecordid>eNp9kbtPwzAQxi0EEqWwI7FEDDCl2PEj8YhKoUg8Bspsue6ZukrjYidC5a_HUSsGBm6400m_7x76EDoneEQIljezyd2owLjqE6eSHaAB4bzMpWDiEA0wJlUuaUWP0UmMq9QKxooBmj5DG3ztP7aZ9SFrl5BNajBtcEbX2XipgzYtBPetW-ebzNvsDdbO-GbRmTYJXnTjv1yAeIqOrK4jnO3rEL3fT2bjaf70-vA4vn3KDeW0zTXVpSVVuopaC2KxkMIYYRdWE8AltWYuiMYcKOOSlPOywJzMKbWVxmCFFnSIrndzN8F_dhBbtXbRQF3rBnwXVVVyzAohy0Re_UumFbiPBF7-AVe-C036QlWiYJxR2UN4B5ngYwxg1Sa4tQ5bRbDqHVDJAdU7oPYOJMnFTuIA4BdnQlScC_oDw0WBpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862454390</pqid></control><display><type>article</type><title>Metrology for the Electrical Characterization of Semiconductor Nanowires</title><source>IEEE Electronic Library (IEL)</source><creator>Richter, Curt A. ; Xiong, Hao D. ; Zhu, Xiaoxiao ; Wang, Wenyong ; Stanford, Vincent M. ; Hong, Woong-Ki ; Lee, Takhee ; Ioannou, Dimitris E. ; Li, Qiliang</creator><creatorcontrib>Richter, Curt A. ; Xiong, Hao D. ; Zhu, Xiaoxiao ; Wang, Wenyong ; Stanford, Vincent M. ; Hong, Woong-Ki ; Lee, Takhee ; Ioannou, Dimitris E. ; Li, Qiliang</creatorcontrib><description>Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.2005394</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1f noise ; Devices ; Fabrication ; FETs ; hbox{1}/f noise ; Metrology ; Nanocomposites ; Nanoelectronics ; Nanomaterials ; Nanostructure ; Nanowires ; Noise ; semiconductor nanowires ; Semiconductors ; test structures</subject><ispartof>IEEE transactions on electron devices, 2008-11, Vol.55 (11), p.3086-3095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</citedby><cites>FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4668556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4668556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Richter, Curt A.</creatorcontrib><creatorcontrib>Xiong, Hao D.</creatorcontrib><creatorcontrib>Zhu, Xiaoxiao</creatorcontrib><creatorcontrib>Wang, Wenyong</creatorcontrib><creatorcontrib>Stanford, Vincent M.</creatorcontrib><creatorcontrib>Hong, Woong-Ki</creatorcontrib><creatorcontrib>Lee, Takhee</creatorcontrib><creatorcontrib>Ioannou, Dimitris E.</creatorcontrib><creatorcontrib>Li, Qiliang</creatorcontrib><title>Metrology for the Electrical Characterization of Semiconductor Nanowires</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.</description><subject>1f noise</subject><subject>Devices</subject><subject>Fabrication</subject><subject>FETs</subject><subject>hbox{1}/f noise</subject><subject>Metrology</subject><subject>Nanocomposites</subject><subject>Nanoelectronics</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Noise</subject><subject>semiconductor nanowires</subject><subject>Semiconductors</subject><subject>test structures</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kbtPwzAQxi0EEqWwI7FEDDCl2PEj8YhKoUg8Bspsue6ZukrjYidC5a_HUSsGBm6400m_7x76EDoneEQIljezyd2owLjqE6eSHaAB4bzMpWDiEA0wJlUuaUWP0UmMq9QKxooBmj5DG3ztP7aZ9SFrl5BNajBtcEbX2XipgzYtBPetW-ebzNvsDdbO-GbRmTYJXnTjv1yAeIqOrK4jnO3rEL3fT2bjaf70-vA4vn3KDeW0zTXVpSVVuopaC2KxkMIYYRdWE8AltWYuiMYcKOOSlPOywJzMKbWVxmCFFnSIrndzN8F_dhBbtXbRQF3rBnwXVVVyzAohy0Re_UumFbiPBF7-AVe-C036QlWiYJxR2UN4B5ngYwxg1Sa4tQ5bRbDqHVDJAdU7oPYOJMnFTuIA4BdnQlScC_oDw0WBpg</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Richter, Curt A.</creator><creator>Xiong, Hao D.</creator><creator>Zhu, Xiaoxiao</creator><creator>Wang, Wenyong</creator><creator>Stanford, Vincent M.</creator><creator>Hong, Woong-Ki</creator><creator>Lee, Takhee</creator><creator>Ioannou, Dimitris E.</creator><creator>Li, Qiliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Metrology for the Electrical Characterization of Semiconductor Nanowires</title><author>Richter, Curt A. ; Xiong, Hao D. ; Zhu, Xiaoxiao ; Wang, Wenyong ; Stanford, Vincent M. ; Hong, Woong-Ki ; Lee, Takhee ; Ioannou, Dimitris E. ; Li, Qiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>1f noise</topic><topic>Devices</topic><topic>Fabrication</topic><topic>FETs</topic><topic>hbox{1}/f noise</topic><topic>Metrology</topic><topic>Nanocomposites</topic><topic>Nanoelectronics</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Noise</topic><topic>semiconductor nanowires</topic><topic>Semiconductors</topic><topic>test structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Curt A.</creatorcontrib><creatorcontrib>Xiong, Hao D.</creatorcontrib><creatorcontrib>Zhu, Xiaoxiao</creatorcontrib><creatorcontrib>Wang, Wenyong</creatorcontrib><creatorcontrib>Stanford, Vincent M.</creatorcontrib><creatorcontrib>Hong, Woong-Ki</creatorcontrib><creatorcontrib>Lee, Takhee</creatorcontrib><creatorcontrib>Ioannou, Dimitris E.</creatorcontrib><creatorcontrib>Li, Qiliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richter, Curt A.</au><au>Xiong, Hao D.</au><au>Zhu, Xiaoxiao</au><au>Wang, Wenyong</au><au>Stanford, Vincent M.</au><au>Hong, Woong-Ki</au><au>Lee, Takhee</au><au>Ioannou, Dimitris E.</au><au>Li, Qiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrology for the Electrical Characterization of Semiconductor Nanowires</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>55</volume><issue>11</issue><spage>3086</spage><epage>3095</epage><pages>3086-3095</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2008.2005394</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2008-11, Vol.55 (11), p.3086-3095 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_4668556 |
source | IEEE Electronic Library (IEL) |
subjects | 1f noise Devices Fabrication FETs hbox{1}/f noise Metrology Nanocomposites Nanoelectronics Nanomaterials Nanostructure Nanowires Noise semiconductor nanowires Semiconductors test structures |
title | Metrology for the Electrical Characterization of Semiconductor Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrology%20for%20the%20Electrical%20Characterization%20of%20Semiconductor%20Nanowires&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Richter,%20Curt%20A.&rft.date=2008-11-01&rft.volume=55&rft.issue=11&rft.spage=3086&rft.epage=3095&rft.pages=3086-3095&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.2005394&rft_dat=%3Cproquest_RIE%3E875042697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862454390&rft_id=info:pmid/&rft_ieee_id=4668556&rfr_iscdi=true |