Metrology for the Electrical Characterization of Semiconductor Nanowires

Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2008-11, Vol.55 (11), p.3086-3095
Hauptverfasser: Richter, Curt A., Xiong, Hao D., Zhu, Xiaoxiao, Wang, Wenyong, Stanford, Vincent M., Hong, Woong-Ki, Lee, Takhee, Ioannou, Dimitris E., Li, Qiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3095
container_issue 11
container_start_page 3086
container_title IEEE transactions on electron devices
container_volume 55
creator Richter, Curt A.
Xiong, Hao D.
Zhu, Xiaoxiao
Wang, Wenyong
Stanford, Vincent M.
Hong, Woong-Ki
Lee, Takhee
Ioannou, Dimitris E.
Li, Qiliang
description Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.
doi_str_mv 10.1109/TED.2008.2005394
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4668556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4668556</ieee_id><sourcerecordid>875042697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</originalsourceid><addsrcrecordid>eNp9kbtPwzAQxi0EEqWwI7FEDDCl2PEj8YhKoUg8Bspsue6ZukrjYidC5a_HUSsGBm6400m_7x76EDoneEQIljezyd2owLjqE6eSHaAB4bzMpWDiEA0wJlUuaUWP0UmMq9QKxooBmj5DG3ztP7aZ9SFrl5BNajBtcEbX2XipgzYtBPetW-ebzNvsDdbO-GbRmTYJXnTjv1yAeIqOrK4jnO3rEL3fT2bjaf70-vA4vn3KDeW0zTXVpSVVuopaC2KxkMIYYRdWE8AltWYuiMYcKOOSlPOywJzMKbWVxmCFFnSIrndzN8F_dhBbtXbRQF3rBnwXVVVyzAohy0Re_UumFbiPBF7-AVe-C036QlWiYJxR2UN4B5ngYwxg1Sa4tQ5bRbDqHVDJAdU7oPYOJMnFTuIA4BdnQlScC_oDw0WBpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862454390</pqid></control><display><type>article</type><title>Metrology for the Electrical Characterization of Semiconductor Nanowires</title><source>IEEE Electronic Library (IEL)</source><creator>Richter, Curt A. ; Xiong, Hao D. ; Zhu, Xiaoxiao ; Wang, Wenyong ; Stanford, Vincent M. ; Hong, Woong-Ki ; Lee, Takhee ; Ioannou, Dimitris E. ; Li, Qiliang</creator><creatorcontrib>Richter, Curt A. ; Xiong, Hao D. ; Zhu, Xiaoxiao ; Wang, Wenyong ; Stanford, Vincent M. ; Hong, Woong-Ki ; Lee, Takhee ; Ioannou, Dimitris E. ; Li, Qiliang</creatorcontrib><description>Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.2005394</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1f noise ; Devices ; Fabrication ; FETs ; hbox{1}/f noise ; Metrology ; Nanocomposites ; Nanoelectronics ; Nanomaterials ; Nanostructure ; Nanowires ; Noise ; semiconductor nanowires ; Semiconductors ; test structures</subject><ispartof>IEEE transactions on electron devices, 2008-11, Vol.55 (11), p.3086-3095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</citedby><cites>FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4668556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4668556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Richter, Curt A.</creatorcontrib><creatorcontrib>Xiong, Hao D.</creatorcontrib><creatorcontrib>Zhu, Xiaoxiao</creatorcontrib><creatorcontrib>Wang, Wenyong</creatorcontrib><creatorcontrib>Stanford, Vincent M.</creatorcontrib><creatorcontrib>Hong, Woong-Ki</creatorcontrib><creatorcontrib>Lee, Takhee</creatorcontrib><creatorcontrib>Ioannou, Dimitris E.</creatorcontrib><creatorcontrib>Li, Qiliang</creatorcontrib><title>Metrology for the Electrical Characterization of Semiconductor Nanowires</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.</description><subject>1f noise</subject><subject>Devices</subject><subject>Fabrication</subject><subject>FETs</subject><subject>hbox{1}/f noise</subject><subject>Metrology</subject><subject>Nanocomposites</subject><subject>Nanoelectronics</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Noise</subject><subject>semiconductor nanowires</subject><subject>Semiconductors</subject><subject>test structures</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kbtPwzAQxi0EEqWwI7FEDDCl2PEj8YhKoUg8Bspsue6ZukrjYidC5a_HUSsGBm6400m_7x76EDoneEQIljezyd2owLjqE6eSHaAB4bzMpWDiEA0wJlUuaUWP0UmMq9QKxooBmj5DG3ztP7aZ9SFrl5BNajBtcEbX2XipgzYtBPetW-ebzNvsDdbO-GbRmTYJXnTjv1yAeIqOrK4jnO3rEL3fT2bjaf70-vA4vn3KDeW0zTXVpSVVuopaC2KxkMIYYRdWE8AltWYuiMYcKOOSlPOywJzMKbWVxmCFFnSIrndzN8F_dhBbtXbRQF3rBnwXVVVyzAohy0Re_UumFbiPBF7-AVe-C036QlWiYJxR2UN4B5ngYwxg1Sa4tQ5bRbDqHVDJAdU7oPYOJMnFTuIA4BdnQlScC_oDw0WBpg</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Richter, Curt A.</creator><creator>Xiong, Hao D.</creator><creator>Zhu, Xiaoxiao</creator><creator>Wang, Wenyong</creator><creator>Stanford, Vincent M.</creator><creator>Hong, Woong-Ki</creator><creator>Lee, Takhee</creator><creator>Ioannou, Dimitris E.</creator><creator>Li, Qiliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Metrology for the Electrical Characterization of Semiconductor Nanowires</title><author>Richter, Curt A. ; Xiong, Hao D. ; Zhu, Xiaoxiao ; Wang, Wenyong ; Stanford, Vincent M. ; Hong, Woong-Ki ; Lee, Takhee ; Ioannou, Dimitris E. ; Li, Qiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a3a7f189643ffe6dd96cc6fdfa1e073fcb61a05e345917b72051b33f8a0ef6a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>1f noise</topic><topic>Devices</topic><topic>Fabrication</topic><topic>FETs</topic><topic>hbox{1}/f noise</topic><topic>Metrology</topic><topic>Nanocomposites</topic><topic>Nanoelectronics</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Noise</topic><topic>semiconductor nanowires</topic><topic>Semiconductors</topic><topic>test structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Curt A.</creatorcontrib><creatorcontrib>Xiong, Hao D.</creatorcontrib><creatorcontrib>Zhu, Xiaoxiao</creatorcontrib><creatorcontrib>Wang, Wenyong</creatorcontrib><creatorcontrib>Stanford, Vincent M.</creatorcontrib><creatorcontrib>Hong, Woong-Ki</creatorcontrib><creatorcontrib>Lee, Takhee</creatorcontrib><creatorcontrib>Ioannou, Dimitris E.</creatorcontrib><creatorcontrib>Li, Qiliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richter, Curt A.</au><au>Xiong, Hao D.</au><au>Zhu, Xiaoxiao</au><au>Wang, Wenyong</au><au>Stanford, Vincent M.</au><au>Hong, Woong-Ki</au><au>Lee, Takhee</au><au>Ioannou, Dimitris E.</au><au>Li, Qiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrology for the Electrical Characterization of Semiconductor Nanowires</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>55</volume><issue>11</issue><spage>3086</spage><epage>3095</epage><pages>3086-3095</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency \hbox{1}/f noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency \hbox{1}/f noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2008.2005394</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2008-11, Vol.55 (11), p.3086-3095
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_4668556
source IEEE Electronic Library (IEL)
subjects 1f noise
Devices
Fabrication
FETs
hbox{1}/f noise
Metrology
Nanocomposites
Nanoelectronics
Nanomaterials
Nanostructure
Nanowires
Noise
semiconductor nanowires
Semiconductors
test structures
title Metrology for the Electrical Characterization of Semiconductor Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrology%20for%20the%20Electrical%20Characterization%20of%20Semiconductor%20Nanowires&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Richter,%20Curt%20A.&rft.date=2008-11-01&rft.volume=55&rft.issue=11&rft.spage=3086&rft.epage=3095&rft.pages=3086-3095&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.2005394&rft_dat=%3Cproquest_RIE%3E875042697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862454390&rft_id=info:pmid/&rft_ieee_id=4668556&rfr_iscdi=true