Accurate and robust ego-motion estimation using expectation maximization
A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expec...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3920 |
---|---|
container_issue | |
container_start_page | 3914 |
container_title | |
container_volume | |
creator | Dubbelman, G. van der Mark, W. Groen, F.C.A. |
description | A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expectation maximization on a local linearization of the rigid-body motion group SE(3), a distinction can be made between inlier and outlier motion hypothesis. At the same time a robust mean motion as well as its associated uncertainty can be computed on the selected inlier motion hypothesis. The data-sets used for evaluation consist of synthetic and large real-world urban scenes, including several independently moving objects. Using these data-sets, it will be shown that EM-SE(3) is both more accurate and more efficient than RANSAC. |
doi_str_mv | 10.1109/IROS.2008.4650944 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4650944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4650944</ieee_id><sourcerecordid>4650944</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4533c2162a412c18c3be82c8bdaff3ce8fe2f3d2a3d1c21241670fd2c03716753</originalsourceid><addsrcrecordid>eNpVUMtqwzAQVB-Bpqk_oPTiH3AqrR6WjyE0TSAQ6OMcZHkVVGo7WDKk_fq6SSh0LzO7s8wsS8g9o1PGaPG4etm8ToFSPRVK0kKIC5IUuWYChAAqNVySMTDJM6qVuvqn5fL6T5N6RG5_bQpKmVY3JAnhgw4lJBcgx2Q5s7bvTMTUNFXatWUfYoq7Nqvb6NsmxRB9bY60D77ZpXjYo42nSW0Ovvbfx-aOjJz5DJiccULeF09v82W23jyv5rN15lkuYzbkcgtMgREMLNOWl6jB6rIyznGL2iE4XoHhFRv2QDCVU1eBpTwfqOQT8nDy9Yi43XfDdd3X9vwk_gPgOVSe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accurate and robust ego-motion estimation using expectation maximization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dubbelman, G. ; van der Mark, W. ; Groen, F.C.A.</creator><creatorcontrib>Dubbelman, G. ; van der Mark, W. ; Groen, F.C.A.</creatorcontrib><description>A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expectation maximization on a local linearization of the rigid-body motion group SE(3), a distinction can be made between inlier and outlier motion hypothesis. At the same time a robust mean motion as well as its associated uncertainty can be computed on the selected inlier motion hypothesis. The data-sets used for evaluation consist of synthetic and large real-world urban scenes, including several independently moving objects. Using these data-sets, it will be shown that EM-SE(3) is both more accurate and more efficient than RANSAC.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424420575</identifier><identifier>ISBN: 1424420571</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424420582</identifier><identifier>EISBN: 142442058X</identifier><identifier>DOI: 10.1109/IROS.2008.4650944</identifier><identifier>LCCN: 2008900186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Distance measurement ; Estimation ; Global positioning system ; Quaternions ; Robust estimation ; Robustness ; Stereovision ; Three dimensional displays ; visual-odometry</subject><ispartof>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.3914-3920</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4650944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4650944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dubbelman, G.</creatorcontrib><creatorcontrib>van der Mark, W.</creatorcontrib><creatorcontrib>Groen, F.C.A.</creatorcontrib><title>Accurate and robust ego-motion estimation using expectation maximization</title><title>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expectation maximization on a local linearization of the rigid-body motion group SE(3), a distinction can be made between inlier and outlier motion hypothesis. At the same time a robust mean motion as well as its associated uncertainty can be computed on the selected inlier motion hypothesis. The data-sets used for evaluation consist of synthetic and large real-world urban scenes, including several independently moving objects. Using these data-sets, it will be shown that EM-SE(3) is both more accurate and more efficient than RANSAC.</description><subject>Cameras</subject><subject>Distance measurement</subject><subject>Estimation</subject><subject>Global positioning system</subject><subject>Quaternions</subject><subject>Robust estimation</subject><subject>Robustness</subject><subject>Stereovision</subject><subject>Three dimensional displays</subject><subject>visual-odometry</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424420575</isbn><isbn>1424420571</isbn><isbn>9781424420582</isbn><isbn>142442058X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtqwzAQVB-Bpqk_oPTiH3AqrR6WjyE0TSAQ6OMcZHkVVGo7WDKk_fq6SSh0LzO7s8wsS8g9o1PGaPG4etm8ToFSPRVK0kKIC5IUuWYChAAqNVySMTDJM6qVuvqn5fL6T5N6RG5_bQpKmVY3JAnhgw4lJBcgx2Q5s7bvTMTUNFXatWUfYoq7Nqvb6NsmxRB9bY60D77ZpXjYo42nSW0Ovvbfx-aOjJz5DJiccULeF09v82W23jyv5rN15lkuYzbkcgtMgREMLNOWl6jB6rIyznGL2iE4XoHhFRv2QDCVU1eBpTwfqOQT8nDy9Yi43XfDdd3X9vwk_gPgOVSe</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Dubbelman, G.</creator><creator>van der Mark, W.</creator><creator>Groen, F.C.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200809</creationdate><title>Accurate and robust ego-motion estimation using expectation maximization</title><author>Dubbelman, G. ; van der Mark, W. ; Groen, F.C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4533c2162a412c18c3be82c8bdaff3ce8fe2f3d2a3d1c21241670fd2c03716753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cameras</topic><topic>Distance measurement</topic><topic>Estimation</topic><topic>Global positioning system</topic><topic>Quaternions</topic><topic>Robust estimation</topic><topic>Robustness</topic><topic>Stereovision</topic><topic>Three dimensional displays</topic><topic>visual-odometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Dubbelman, G.</creatorcontrib><creatorcontrib>van der Mark, W.</creatorcontrib><creatorcontrib>Groen, F.C.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubbelman, G.</au><au>van der Mark, W.</au><au>Groen, F.C.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate and robust ego-motion estimation using expectation maximization</atitle><btitle>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2008-09</date><risdate>2008</risdate><spage>3914</spage><epage>3920</epage><pages>3914-3920</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424420575</isbn><isbn>1424420571</isbn><eisbn>9781424420582</eisbn><eisbn>142442058X</eisbn><abstract>A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expectation maximization on a local linearization of the rigid-body motion group SE(3), a distinction can be made between inlier and outlier motion hypothesis. At the same time a robust mean motion as well as its associated uncertainty can be computed on the selected inlier motion hypothesis. The data-sets used for evaluation consist of synthetic and large real-world urban scenes, including several independently moving objects. Using these data-sets, it will be shown that EM-SE(3) is both more accurate and more efficient than RANSAC.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2008.4650944</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.3914-3920 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_4650944 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Distance measurement Estimation Global positioning system Quaternions Robust estimation Robustness Stereovision Three dimensional displays visual-odometry |
title | Accurate and robust ego-motion estimation using expectation maximization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20and%20robust%20ego-motion%20estimation%20using%20expectation%20maximization&rft.btitle=2008%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Dubbelman,%20G.&rft.date=2008-09&rft.spage=3914&rft.epage=3920&rft.pages=3914-3920&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424420575&rft.isbn_list=1424420571&rft_id=info:doi/10.1109/IROS.2008.4650944&rft_dat=%3Cieee_6IE%3E4650944%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424420582&rft.eisbn_list=142442058X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4650944&rfr_iscdi=true |