Accurate and robust ego-motion estimation using expectation maximization

A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dubbelman, G., van der Mark, W., Groen, F.C.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expectation maximization on a local linearization of the rigid-body motion group SE(3), a distinction can be made between inlier and outlier motion hypothesis. At the same time a robust mean motion as well as its associated uncertainty can be computed on the selected inlier motion hypothesis. The data-sets used for evaluation consist of synthetic and large real-world urban scenes, including several independently moving objects. Using these data-sets, it will be shown that EM-SE(3) is both more accurate and more efficient than RANSAC.
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2008.4650944