Accurate and robust ego-motion estimation using expectation maximization
A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expec...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves expectation maximization on a local linearization of the rigid-body motion group SE(3), a distinction can be made between inlier and outlier motion hypothesis. At the same time a robust mean motion as well as its associated uncertainty can be computed on the selected inlier motion hypothesis. The data-sets used for evaluation consist of synthetic and large real-world urban scenes, including several independently moving objects. Using these data-sets, it will be shown that EM-SE(3) is both more accurate and more efficient than RANSAC. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2008.4650944 |