Automatic detection of clustered microcalcifications in digital mammograms: Study on applying Adaboost with SVM-based component classifiers

This paper presents a computer-aided diagnosis (CAD) system for automatic detection of clustered microcalcifications (MCs) in digitized mammograms. The proposed system consists of two main steps. First, potential MC pixels in the mammograms are segmented out by using four mixed features consisting o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008-01, Vol.2008, p.4789-4792
Hauptverfasser: Dehghan, F., Abrishami-Moghaddam, H., Giti, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a computer-aided diagnosis (CAD) system for automatic detection of clustered microcalcifications (MCs) in digitized mammograms. The proposed system consists of two main steps. First, potential MC pixels in the mammograms are segmented out by using four mixed features consisting of two wavelet features and two gray level statistical features and then the potential MC pixels are labeled into potential individual MC objects by their spatial connectivity. Second, MCs are detected by extracting a set of 17 features from the potential individual MC objects. The classifier which is used in the first step is a multilayer feedforward neural network classifier but for the second step we have used Adaboost with SVM-based component classifier. Component classifiers which we used in our combining method are SVM classifiers with RBF kernel. The method was applied to a database of 40 mammograms (Nijmegen database) containing 105 clusters of MCs. A free-response operating characteristics (FROC) curve is used to evaluate the performance of CAD system. Results show that the proposed system gives quite satisfactory performance. In particular, 89.55% mean true positive detection rate is achieved at the cost of 0.921 false positive per image.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2008.4650284