Pose tracking from natural features on mobile phones

In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wagner, Daniel, Reitmayr, Gerhard, Mulloni, Alessandro, Drummond, Tom, Schmalstieg, Dieter
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. We present evaluations on robustness and performance on various devices and finally discuss their appropriateness for Augmented Reality applications.
DOI:10.1109/ISMAR.2008.4637338