Pose tracking from natural features on mobile phones
In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art f...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: |
Computing methodologies
> Artificial intelligence
> Computer vision
> Computer vision problems
> Tracking
Computing methodologies
> Artificial intelligence
> Computer vision
> Computer vision tasks
> Scene understanding
Human-centered computing
> Human computer interaction (HCI)
> Interaction paradigms
> Mixed
> augmented reality
|
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. We present evaluations on robustness and performance on various devices and finally discuss their appropriateness for Augmented Reality applications. |
---|---|
DOI: | 10.1109/ISMAR.2008.4637338 |