Clustering variables by classical approaches and neural network Boolean factor analysis
In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3746 |
---|---|
container_issue | |
container_start_page | 3742 |
container_title | |
container_volume | 10 |
creator | Frolov, A. Husek, D. Rezankova, H. Snasel, V. Polyakov, P. |
description | In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes. |
doi_str_mv | 10.1109/IJCNN.2008.4634335 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634335</ieee_id><sourcerecordid>34481855</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-3253ef75eeb29b2a5fb839dba3fceeea929f51f9be3349e7a34bf1cff99f1a493</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2fRFt4AbjkxC3F9jptfISoQFFVLiCO0Tpdg8FNip2A-vZEahGXWWnm02i0jF0IPhaC6-v5Y7FcjiXn-VhNQAFkB2wolFRK5FJMDtmgV5EqxadH_wHPj_8C0HDKhjF-cC5Baxiw18J3saXg6rfkG4ND4ykmZptUHmN0FfoEN5vQYPXe-1ivkpq60Ls1tT9N-Exum8YT1onFqm1CT6DfRhfP2IlFH-l8f0fs5W72XDyki6f7eXGzSJ3kkzYFmQHZaUZkpDYSM2ty0CuDYCsiQi21zYTVhgCUpimCMlZU1mptBSoNI3a16-03fnUU23LtYkXeY01NF0tQKhd5lvXg5Q50fW-5CW6NYVvu3wi_dxZk8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34481855</pqid></control><display><type>conference_proceeding</type><title>Clustering variables by classical approaches and neural network Boolean factor analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Frolov, A. ; Husek, D. ; Rezankova, H. ; Snasel, V. ; Polyakov, P.</creator><creatorcontrib>Frolov, A. ; Husek, D. ; Rezankova, H. ; Snasel, V. ; Polyakov, P.</creatorcontrib><description>In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634335</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial neural networks ; Computer science ; Electronic mail ; Joints ; Loading ; Reactive power</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3742-3746</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27915,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Frolov, A.</creatorcontrib><creatorcontrib>Husek, D.</creatorcontrib><creatorcontrib>Rezankova, H.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Polyakov, P.</creatorcontrib><title>Clustering variables by classical approaches and neural network Boolean factor analysis</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.</description><subject>Algorithm design and analysis</subject><subject>Artificial neural networks</subject><subject>Computer science</subject><subject>Electronic mail</subject><subject>Joints</subject><subject>Loading</subject><subject>Reactive power</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1OwzAQhM2fRFt4AbjkxC3F9jptfISoQFFVLiCO0Tpdg8FNip2A-vZEahGXWWnm02i0jF0IPhaC6-v5Y7FcjiXn-VhNQAFkB2wolFRK5FJMDtmgV5EqxadH_wHPj_8C0HDKhjF-cC5Baxiw18J3saXg6rfkG4ND4ykmZptUHmN0FfoEN5vQYPXe-1ivkpq60Ls1tT9N-Exum8YT1onFqm1CT6DfRhfP2IlFH-l8f0fs5W72XDyki6f7eXGzSJ3kkzYFmQHZaUZkpDYSM2ty0CuDYCsiQi21zYTVhgCUpimCMlZU1mptBSoNI3a16-03fnUU23LtYkXeY01NF0tQKhd5lvXg5Q50fW-5CW6NYVvu3wi_dxZk8A</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Frolov, A.</creator><creator>Husek, D.</creator><creator>Rezankova, H.</creator><creator>Snasel, V.</creator><creator>Polyakov, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Clustering variables by classical approaches and neural network Boolean factor analysis</title><author>Frolov, A. ; Husek, D. ; Rezankova, H. ; Snasel, V. ; Polyakov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-3253ef75eeb29b2a5fb839dba3fceeea929f51f9be3349e7a34bf1cff99f1a493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial neural networks</topic><topic>Computer science</topic><topic>Electronic mail</topic><topic>Joints</topic><topic>Loading</topic><topic>Reactive power</topic><toplevel>online_resources</toplevel><creatorcontrib>Frolov, A.</creatorcontrib><creatorcontrib>Husek, D.</creatorcontrib><creatorcontrib>Rezankova, H.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Polyakov, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Frolov, A.</au><au>Husek, D.</au><au>Rezankova, H.</au><au>Snasel, V.</au><au>Polyakov, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering variables by classical approaches and neural network Boolean factor analysis</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3742</spage><epage>3746</epage><pages>3742-3746</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634335</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3742-3746 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4634335 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Artificial neural networks Computer science Electronic mail Joints Loading Reactive power |
title | Clustering variables by classical approaches and neural network Boolean factor analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20variables%20by%20classical%20approaches%20and%20neural%20network%20Boolean%20factor%20analysis&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Frolov,%20A.&rft.date=2008-06-01&rft.volume=10&rft.spage=3742&rft.epage=3746&rft.pages=3742-3746&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634335&rft_dat=%3Cproquest_6IE%3E34481855%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34481855&rft_id=info:pmid/&rft_ieee_id=4634335&rfr_iscdi=true |