Clustering variables by classical approaches and neural network Boolean factor analysis

In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frolov, A., Husek, D., Rezankova, H., Snasel, V., Polyakov, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3746
container_issue
container_start_page 3742
container_title
container_volume 10
creator Frolov, A.
Husek, D.
Rezankova, H.
Snasel, V.
Polyakov, P.
description In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.
doi_str_mv 10.1109/IJCNN.2008.4634335
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634335</ieee_id><sourcerecordid>34481855</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-3253ef75eeb29b2a5fb839dba3fceeea929f51f9be3349e7a34bf1cff99f1a493</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2fRFt4AbjkxC3F9jptfISoQFFVLiCO0Tpdg8FNip2A-vZEahGXWWnm02i0jF0IPhaC6-v5Y7FcjiXn-VhNQAFkB2wolFRK5FJMDtmgV5EqxadH_wHPj_8C0HDKhjF-cC5Baxiw18J3saXg6rfkG4ND4ykmZptUHmN0FfoEN5vQYPXe-1ivkpq60Ls1tT9N-Exum8YT1onFqm1CT6DfRhfP2IlFH-l8f0fs5W72XDyki6f7eXGzSJ3kkzYFmQHZaUZkpDYSM2ty0CuDYCsiQi21zYTVhgCUpimCMlZU1mptBSoNI3a16-03fnUU23LtYkXeY01NF0tQKhd5lvXg5Q50fW-5CW6NYVvu3wi_dxZk8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34481855</pqid></control><display><type>conference_proceeding</type><title>Clustering variables by classical approaches and neural network Boolean factor analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Frolov, A. ; Husek, D. ; Rezankova, H. ; Snasel, V. ; Polyakov, P.</creator><creatorcontrib>Frolov, A. ; Husek, D. ; Rezankova, H. ; Snasel, V. ; Polyakov, P.</creatorcontrib><description>In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634335</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial neural networks ; Computer science ; Electronic mail ; Joints ; Loading ; Reactive power</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3742-3746</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27915,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Frolov, A.</creatorcontrib><creatorcontrib>Husek, D.</creatorcontrib><creatorcontrib>Rezankova, H.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Polyakov, P.</creatorcontrib><title>Clustering variables by classical approaches and neural network Boolean factor analysis</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.</description><subject>Algorithm design and analysis</subject><subject>Artificial neural networks</subject><subject>Computer science</subject><subject>Electronic mail</subject><subject>Joints</subject><subject>Loading</subject><subject>Reactive power</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1OwzAQhM2fRFt4AbjkxC3F9jptfISoQFFVLiCO0Tpdg8FNip2A-vZEahGXWWnm02i0jF0IPhaC6-v5Y7FcjiXn-VhNQAFkB2wolFRK5FJMDtmgV5EqxadH_wHPj_8C0HDKhjF-cC5Baxiw18J3saXg6rfkG4ND4ykmZptUHmN0FfoEN5vQYPXe-1ivkpq60Ls1tT9N-Exum8YT1onFqm1CT6DfRhfP2IlFH-l8f0fs5W72XDyki6f7eXGzSJ3kkzYFmQHZaUZkpDYSM2ty0CuDYCsiQi21zYTVhgCUpimCMlZU1mptBSoNI3a16-03fnUU23LtYkXeY01NF0tQKhd5lvXg5Q50fW-5CW6NYVvu3wi_dxZk8A</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Frolov, A.</creator><creator>Husek, D.</creator><creator>Rezankova, H.</creator><creator>Snasel, V.</creator><creator>Polyakov, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Clustering variables by classical approaches and neural network Boolean factor analysis</title><author>Frolov, A. ; Husek, D. ; Rezankova, H. ; Snasel, V. ; Polyakov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-3253ef75eeb29b2a5fb839dba3fceeea929f51f9be3349e7a34bf1cff99f1a493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial neural networks</topic><topic>Computer science</topic><topic>Electronic mail</topic><topic>Joints</topic><topic>Loading</topic><topic>Reactive power</topic><toplevel>online_resources</toplevel><creatorcontrib>Frolov, A.</creatorcontrib><creatorcontrib>Husek, D.</creatorcontrib><creatorcontrib>Rezankova, H.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Polyakov, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Frolov, A.</au><au>Husek, D.</au><au>Rezankova, H.</au><au>Snasel, V.</au><au>Polyakov, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering variables by classical approaches and neural network Boolean factor analysis</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3742</spage><epage>3746</epage><pages>3742-3746</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634335</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3742-3746
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_ieee_primary_4634335
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Artificial neural networks
Computer science
Electronic mail
Joints
Loading
Reactive power
title Clustering variables by classical approaches and neural network Boolean factor analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20variables%20by%20classical%20approaches%20and%20neural%20network%20Boolean%20factor%20analysis&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Frolov,%20A.&rft.date=2008-06-01&rft.volume=10&rft.spage=3742&rft.epage=3746&rft.pages=3742-3746&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634335&rft_dat=%3Cproquest_6IE%3E34481855%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34481855&rft_id=info:pmid/&rft_ieee_id=4634335&rfr_iscdi=true