Clustering variables by classical approaches and neural network Boolean factor analysis

In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frolov, A., Husek, D., Rezankova, H., Snasel, V., Polyakov, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis, hierarchical clustering, and a linear factor analysis on the mushroom dataset. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.
ISSN:2161-4393
1522-4899
2161-4407
DOI:10.1109/IJCNN.2008.4634335