Ensembles of k-nearest neighbors and dimensionality reduction

In this paper, ensembles of k-nearest neighbors classifiers are explored for gene expression cancer classification, where each classifier is linked to a randomly selected subset of genes. It is experimentally demonstrated using five datasets that such ensembles can yield both good accuracy and dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Okun, O., Priisalu, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, ensembles of k-nearest neighbors classifiers are explored for gene expression cancer classification, where each classifier is linked to a randomly selected subset of genes. It is experimentally demonstrated using five datasets that such ensembles can yield both good accuracy and dimensionality reduction. If a characteristic called dataset complexity guides which random subset to include into an ensemble, then the ensemble achieves even better performance.
ISSN:2161-4393
1522-4899
2161-4407
DOI:10.1109/IJCNN.2008.4634077