Multi-objective optimization of TSK fuzzy models
In this paper we propose a hybrid algorithm to optimize the structure of TSK type fuzzy model using back-propagation (BP) learning algorithm and non-dominated sorting genetic algorithm (NSGA-II). In a first step, BP algorithm is used to optimize the parameters of the model (parameters of membership...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we propose a hybrid algorithm to optimize the structure of TSK type fuzzy model using back-propagation (BP) learning algorithm and non-dominated sorting genetic algorithm (NSGA-II). In a first step, BP algorithm is used to optimize the parameters of the model (parameters of membership functions and fuzzy rules). NSGA-II is used in a second phase, to optimize the number of fuzzy rules and to fine tune the parameters. A well known benchmark is used to evaluate performances of the proposed modeling approach, and compare it with other modeling approaches. |
---|---|
DOI: | 10.1109/SSD.2008.4632782 |