Multi-objective optimization of TSK fuzzy models

In this paper we propose a hybrid algorithm to optimize the structure of TSK type fuzzy model using back-propagation (BP) learning algorithm and non-dominated sorting genetic algorithm (NSGA-II). In a first step, BP algorithm is used to optimize the parameters of the model (parameters of membership...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guenounou, O., Belmehdi, A., Dahhou, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose a hybrid algorithm to optimize the structure of TSK type fuzzy model using back-propagation (BP) learning algorithm and non-dominated sorting genetic algorithm (NSGA-II). In a first step, BP algorithm is used to optimize the parameters of the model (parameters of membership functions and fuzzy rules). NSGA-II is used in a second phase, to optimize the number of fuzzy rules and to fine tune the parameters. A well known benchmark is used to evaluate performances of the proposed modeling approach, and compare it with other modeling approaches.
DOI:10.1109/SSD.2008.4632782