Possibilistic clustering of generic shapes derived from templates

We present in this paper a new type of alternating-optimization based possibilistic c-shell algorithm for clustering template-based shapes. A cluster prototype consists of a copy of the template after translation, scaling, rotation, and/or affine transformations. We use a number of two-dimensional d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tsaipei Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present in this paper a new type of alternating-optimization based possibilistic c-shell algorithm for clustering template-based shapes. A cluster prototype consists of a copy of the template after translation, scaling, rotation, and/or affine transformations. We use a number of two-dimensional data sets, both synthetic and from real-world images, to illustrate the capability of our algorithm in detecting generic template-based shapes in images. We also describe a progressive clustering procedure aimed to relax the requirements of known number of clusters and good initialization.
ISSN:1098-7584
DOI:10.1109/FUZZY.2008.4630603