A Statistical Assessment of Subject Factors in the PCA Recognition of Human Faces

Some people's faces are easier to recognize than others, but it is not obvious what subject-specific factors make individual faces easy or difficult to recognize. This study considers 11 factors that might make recognition easy or difficult for 1,072 human subjects in the FERET dataset. The spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Givens, Geof, Beveridge, J Ross, Draper, Bruce A., Bolme, David
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some people's faces are easier to recognize than others, but it is not obvious what subject-specific factors make individual faces easy or difficult to recognize. This study considers 11 factors that might make recognition easy or difficult for 1,072 human subjects in the FERET dataset. The specific factors are: race (white, Asian, African-American, or other), gender, age (young or old), glasses (present or absent), facial hair (present or absent), bangs (present or absent), mouth (closed or other), eyes (open or other), complexion (clear or other), makeup (present or absent), and expression (neutral or other). An ANOVA is used to determine the relationship between these subject covariates and the distance between pairs of images of the same subject in a standard Eigenfaces subspace. Some results are not terribly surprising. For example, the distance between pairs of images of the same subject increases for people who change their appearance, e.g., open and close their eyes, open and close their mouth or change expression. Thus changing appearance makes recognition harder. Other findings are surprising. Distance between pairs of images for subjects decreases for people who consistently wear glasses, so wearing glasses makes subjects more recognizable. Pairwise distance also decreases for people who are either Asian or African-American rather than white. A possible shortcoming of our analysis is that minority classifications such as African-Americans and wearers-of-glasses are underrepresented in training. Followup experiments with balanced training addresses this concern and corroborates the original findings. Another possible shortcoming of this analysis is the novel use of pairwise distance between images of a single person as the predictor of recognition difficulty. A separate experiment confirms that larger distances between pairs of subject images implies a larger recognition rank for that same pair of images, thus confirming that the subject is harder to recognize.
ISSN:1063-6919
DOI:10.1109/CVPRW.2003.10088