A stereovision-based probabilistic lane tracker for difficult road scenarios
This paper presents a lane estimation technique based on the particle filter framework, which fuses several image-based cues (edges, lane markings and curbs), and 3D cues extracted from stereovision. A partition sampling-like approach is used to decouple pitch estimation from the rest of the paramet...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a lane estimation technique based on the particle filter framework, which fuses several image-based cues (edges, lane markings and curbs), and 3D cues extracted from stereovision. A partition sampling-like approach is used to decouple pitch estimation from the rest of the parameter set, allowing the use of a significantly lower number of particles, and initialization samples are used for faster handling of discontinuous roads. We also introduce a measure for detection quality, for result validation. The resulted solution has proven to be a reliable and fast lane detector for difficult scenarios. |
---|---|
ISSN: | 1931-0587 2642-7214 |
DOI: | 10.1109/IVS.2008.4621256 |