Unsupervised classification of PolSAR images using eigenvector analysis, Krogager decomposition and the Wishart classifier

In this paper, a new scheme for unsupervised classification of polarimetric synthetic aperture radar (PolSAR) images is presented. The method mainly consists of four parts: eigenvector analysis of the coherency (or covariance) matrix, Krogager decomposition, unsupervised classification using Krogage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiao-Guang Zhou, Li-Wen Zhao, Gang-Yao Kuang, Jian-Wei Wan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new scheme for unsupervised classification of polarimetric synthetic aperture radar (PolSAR) images is presented. The method mainly consists of four parts: eigenvector analysis of the coherency (or covariance) matrix, Krogager decomposition, unsupervised classification using Krogager coefficients and scattering entropy, and iterative classification based on the Wishart distance measure. The method can classify the pixels into nine classes, and its effectiveness is demonstrated using the Jet Propulsion Laboratorypsilas AIRSAR and SIR-C/X-SAR L-band PolSAR data.
DOI:10.1109/ICINFA.2008.4607988