Design of Tunneling Field-Effect Transistors Using Strained-Silicon/Strained-Germanium Type-II Staggered Heterojunctions

Heterojunction tunneling field-effect transistors (HTFETs) that use strained-silicon/strained-germanium type-II staggered band alignment for band-to-band tunneling (BBT) injection are simulated using a nonlocal quantum tunneling model. The tunneling model is first compared to measurements of gate- c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2008-09, Vol.29 (9), p.1074-1077
Hauptverfasser: Nayfeh, O.M., Chleirigh, C.N., Hennessy, J., Gomez, L., Hoyt, J.L., Antoniadis, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterojunction tunneling field-effect transistors (HTFETs) that use strained-silicon/strained-germanium type-II staggered band alignment for band-to-band tunneling (BBT) injection are simulated using a nonlocal quantum tunneling model. The tunneling model is first compared to measurements of gate- controlled BBT in previously fabricated strained SiGe diodes and is shown to produce good agreement with the measurements. The simulation of the gated diode structure is then extended to study HTFETs with an effective energy barrier of 0.25 eV at the strained-Si/strained-Ge heterointerface. As the band alignment, particularly the valence band offset, is critical to modeling HTFET operation, analysis of measured characteristics of MOS capacitors fabricated in strained-Si/strained-Ge/relaxed Si 0.5 Ge 0.5 hetero- junctions is used to extract a valence band offset of 0.64 eV at the strained-Si/strained-Ge heterointerface. Simulations are used to compare HTFETs to MOSFETs with similar technology parameters. The simulations show that HTFETs have potential for low-operating-voltage (V dd < 0.5 V) application and exhibit steep subthreshold swing over many decades while maintaining high ON-state currents.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2008.2000970