Signal analysis by using adaptive filterbanks in cochlear implants
Current speech processing in cochlear implants use a filterbank to analyse audio signals into several frequency bands, each associated with one electrode. Because the processing is performed on input signal blocks of fixed sizes, the filterbank provides a unique time-frequency resolution to represen...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current speech processing in cochlear implants use a filterbank to analyse audio signals into several frequency bands, each associated with one electrode. Because the processing is performed on input signal blocks of fixed sizes, the filterbank provides a unique time-frequency resolution to represent the various signal features. However, different components of audio signals may require different time-frequency resolutions for an accurate representation and perception. In this paper we investigate the influence on speech intelligibility in cochlear implants users when filterbanks with different time-frequency resolutions are used. In order to represent all signal features accurately, an adaptive filterbank has been developed that accepts input blocks of different sizes. The different resolutions required are achieved by adequately switching between block sizes depending on the input signal characteristics. The filterbank was incorporated into the commercial Advanced Combinational Encoder (ACE) and acutely tested on six cochlear implant recipients. |
---|---|
ISSN: | 2163-4025 2766-4465 |
DOI: | 10.1109/BIOCAS.2006.4600345 |